• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

Gragne, Ashenafi Seifu; Sharma, Ashish; Mehrotra, R; Alfredsen, Knut
Journal article, Peer reviewed
Thumbnail
Åpne
hess-19-3695-2015.pdf (6.568Mb)
Permanent lenke
http://hdl.handle.net/11250/2357862
Utgivelsesdato
2015
Metadata
Vis full innførsel
Samlinger
  • Institutt for maskinteknikk og produksjon [2633]
  • Publikasjoner fra CRIStin - NTNU [21889]
Originalversjon
Hydrology and Earth System Sciences 2015, 19:3695-3714   10.5194/hess-19-3695-2015
Sammendrag
Accuracy of reservoir inflow forecasts is instrumental

for maximizing the value of water resources

and benefits gained through hydropower generation. Improving

hourly reservoir inflow forecasts over a 24 h lead

time is considered within the day-ahead (Elspot) market of

the Nordic exchange market. A complementary modelling

framework presents an approach for improving real-time

forecasting without needing to modify the pre-existing forecasting

model, but instead formulating an independent additive

or complementary model that captures the structure the

existing operational model may be missing. We present here

the application of this principle for issuing improved hourly

inflow forecasts into hydropower reservoirs over extended

lead times, and the parameter estimation procedure reformulated

to deal with bias, persistence and heteroscedasticity.

The procedure presented comprises an error model added on

top of an unalterable constant parameter conceptual model.

This procedure is applied in the 207 km2 Krinsvatn catchment

in central Norway. The structure of the error model

is established based on attributes of the residual time series

from the conceptual model. Besides improving forecast skills

of operational models, the approach estimates the uncertainty

in the complementary model structure and produces probabilistic

inflow forecasts that entrain suitable information for

reducing uncertainty in the decision-making processes in hydropower

systems operation. Deterministic and probabilistic

evaluations revealed an overall significant improvement

in forecast accuracy for lead times up to 17 h. Evaluation of

the percentage of observations bracketed in the forecasted 95% confidence interval indicated that the degree of success

in containing 95% of the observations varies across seasons

and hydrologic years.
Utgiver
European Geosciences Union
Tidsskrift
Hydrology and Earth System Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit