• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for energi og prosessteknikk
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for energi og prosessteknikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operation of power cycles with integrated CO₂ capture using advanced high-temperature technologies

Najmi, Bita
Doctoral thesis
View/Open
NTNU_Bita_Najmi_PhD_avhandling.pdf (Locked)
Fulltext (PDF) available (9.901Mb)
URI
http://hdl.handle.net/11250/2356245
Date
2015
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [3337]
Abstract
One of the routes for CO2 capture from power plants is to remove carbon content of the fuel before

combustion takes place, known as pre-combustion CO2 capture. A typical pre-combustion CO2

capture method consists of two stages of Water Gas Shift (WGS) reactors at two different

temperature levels, followed by a CO2 capture unit. The CO2 capture process is usually based on

physical absorption at low temperature. A novel pre-combustion CO2 capture technology, so-called

Sorption Enhanced Water Gas Shift (SEWGS), combines both the WGS reaction and CO2 capture in

one single unit, at elevated temperatures. The equilibrium-controlled WGS reaction is hence

enhanced towards higher conversions of CO into CO2. The CO2 is adsorbed simultaneously on the

solid adsorbent.

This thesis deals with dynamic performance assessment of an Integrated Gasification Combined

Cycle (IGCC) power plant, incorporating a SEWGS process for pre-combustion CO2 capture. This is

to examine how well the IGCC with SEWGS can perform under load variations.

Syngas from a coal gasifier is sent to the SEWGS system after going through solids and H2S removal

units. A multi-train SEWGS system treats the feed syngas being produced continuously in a gasifer of

the IGCC. Each SEWGS train consists of eight reactors, working in parallel and packed with a

mixture of the WGS reaction catalyst and CO2 adsorbent. Each SEWGS reactor undergoes a fixed

sequence of processing steps, repeated in a cyclic manner, based on a Pressure Swing Adsorption

(PSA) process. The PSA process steps consist of feed, rinse, three pressure equalization,

depressurization, purge and repressurization steps. The SEWGS reactors are interacting with each

other in all the cycle steps, except during depressurization and purge step. The interconnection

between the reactors is carried out using valves. Steam is assumed to be extracted from the steam

cycle and used as the rinse and purge gas. A H2-rich stream is produced during the feed step, where

the WGS reaction and CO2 adsorption take place simultaneously. Part of the H2-rich being produced

during the feed step is used for the repressurization step. A CO2-rich gas is recovered during the

depressurization and purge step. The H2-rich product is used as a fuel in a GT within the IGCC power

plant. Cyclic operation manner of the SEWGS process means that the system is inherently dynamic

and therefore studying dynamic performance of such a system is necessary, particularly when such a

process is incorporated into a power plant. Also, the SEWGS system dynamic characteristic at

different flow rates of feed syngas is interesting for further investigation of the load-following

performance of the IGCC power plant at different GT load levels.

A one-dimensional, non-isothermal, homogeneous dynamic model of a PSA-based SEWGS system

of multiple dispersed plug-flow reactors has been carried out. Operation schedule of the SEWGS

system, including aspects such as transition from one PSA processing step to another for a given

reactor and switching of the connections between the reactors using interconnecting valves, is

implemented by the modeling approach.

The designed SEWGS process gives a CO2 recovery rate of 95%, with around 99% purity of the

recovered CO2. The H2-rich product purity achieved is around 81%. The H2-rich stream flow rate produced from a SEWGS train, is found to undergo a periodic fluctuation of around ±33%, due to

using part of the H2-rich product stream repeatedly during the re-pressurization step. While, the GT

requires a smooth fuel heat input (flow rate, composition) at any given load of operation, it is

essential to dampen the H2-rich product flow rate fluctuations as much as necessary. A schedule is

developed to initiate operation of the trains with time lags and evaluate its impact on improving the

H2-rich fuel fluctuation. Two different scheduled operation schemes are applied and time lags

between the operation of trains are optimized. The fluctuations of the H2-rich stream flow rate are

decreased from ±33% to ~±14% and ~±11% for the first and second operation scheme, respectively.

A closed-loop control strategy including a buffer tank followed by a control valve, before the GT is

implemented to further smooth out the fluctuations in the H2-rich fuel flow rate and composition. The

control system is also designed to control the H2-rich fuel at full-load and part-load operations of the

GT, complying with the fuel flow rate and heating value requirements of a modern GT.

Performance simulation of the IGCC integrated with the SEWGS system, incorporating the fuel

control strategy is first carried out at full-load operation of the GT. For evaluating part-load

performances, four different cases, introducing various load change strategies for the GT and gasifier

are studied. Step/ramp changes of the GT and gasifier, unplanned/planned GT load changes and

same/different GT and gasifier load change occurrence time are all addressed through these four

cases. Simulation results indicate that the designed control strategy functions properly and is able to

control the H2-rich fuel as per GT requirements at different part-loads, while keeping the buffer tank

pressure within the desired range. Dynamic characteristics of the SEWGS system is revealed from the

SEWGS simulations at different feed syngas flow rates and compared with those of the gasifier and

GT. Using the buffer tank between the SEWGS and the GT, improves part-load operation flexibility

of the GT. Smooth operation and load-following capability of the IGCC integrated with the SEWGS

system is achievable, depending on the load change strategy, taking into account the limited load

gradient of the SEWGS and gasifier units compared to the GT.
Has parts
Paper 1: Najmi, Bita; Bolland, Olav; Westmann, Snorre Foss. Simulation of the cyclic operation of a PSA-based SEWGS process for hydrogen production with CO2 capture. Energy Procedia Volume 37, 2013, Pages 2293–2302, GHGT-11, http://dx.doi.org/10.1016/j.egypro.2013.06.110 OA article under CC BY-NC-ND

Paper 2: Najmi, Bita; Bolland, Olav; Colombo, Konrad Eichhorn. A Systematic approach to the modeling and simulation of a Sorption Enchanced Water Gas Shift (SEWGS) process for CO2 capture

Paper 3: Najmi, Bita; Bolland, Olav; Colombo, Konrad Werner Eichhorn. Load-following performance of IGCC with integrated CO<sub>2</sub> capture using SEWGS pre-combustion technology. International Journal of Greenhouse Gas Control 2015 ;Volum 35. s. 30-46 http://dx.doi.org/10.1016/j.ijggc.2015.01.015 This article is reprinted with kind permission from Elsevier, sciencedirect.com

Paper 4: Najmi, Bita; Bolland, Olav. Operability of Integrated Gasification Combined Cycle Power Plant with SEWGS Technology for Pre-combustion CO2 Capture. Energy Procedia 2014 ;Volum 63. s. 1986-1995 http://dx.doi.org/10.1016/j.egypro.2014.11.213 OA article under CC BY-NC-ND
Publisher
NTNU
Series
Doctoral thesis at NTNU;2015:117

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit