Show simple item record

dc.contributor.advisorKrammer, Gernotnb_NO
dc.contributor.advisorAarhaug, Thor Andersnb_NO
dc.contributor.advisorMøller-Holst, Steffennb_NO
dc.contributor.authorSørli, Jan Gregor Høydahlnb_NO
dc.date.accessioned2014-12-19T11:44:31Z
dc.date.available2014-12-19T11:44:31Z
dc.date.created2010-09-04nb_NO
dc.date.issued2008nb_NO
dc.identifier348648nb_NO
dc.identifierntnudaim:4314nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/233653
dc.description.abstractIn this work, a 23-1 designed experiment has been performed to evaluate the effect of selected operating conditions on PEMFC performance and durability. Relative humidity, clamping pressure and back pressure were studied at two levels for Gore MEAs and GDLs. Two replicated experiments were performed. An ON/OFF test cycle was used to accelerate degradation. Total duration of the tests, after a break in procedure suggested by Gore, was ten days. In addition to sampling of voltage and current response and ohmic resistance, effluents were manually sampled from both electrodes every 24 hours and analyzed. Experiments with low humidification levels showed inferior durability. The combination of high relative humidity (100 %), high clamping pressure (10 barg) and high back pressure (1.5barg) result in the best performance and the lowest degradation rate. Results indicate that relative humidity is important both for performance and durability. Generally, fluoride emission rates (FER) showed an increasing trend with time. Higher rates were observed at the cathode. For the experiment with low relative humidity (25 %), low clamping pressure (5 barg) and high back pressure (1.5 barg) FER was significantly higher compared to the other experiments. For all tests the sulfur emission rates (SER) are initial high. Rates are higher at the anode. For the experiment with high relative humidity, low clamping pressure and no back pressure, the SER was significantly higher than for the other experiments. The sustained high levels of sulfur are probably a result of sulfuric acid residue from production of the MEA and/or GDL. High humidification of gases appears to more effectively wash out the sulfur.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for energi- og prosessteknikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE5 energi og miljøno_NO
dc.subjectVarme- og energiprosesserno_NO
dc.titleContribution of humidity and pressure to PEMFC performance and durabilitynb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber75nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for energi- og prosessteknikknb_NO


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record