Show simple item record

dc.contributor.authorUnander, Tor Erlingnb_NO
dc.date.accessioned2014-12-19T11:17:24Z
dc.date.available2014-12-19T11:17:24Z
dc.date.created2002-06-21nb_NO
dc.date.issued2002nb_NO
dc.identifier126339nb_NO
dc.identifier.isbn82-471-5475-7, h.nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/229120
dc.description.abstractAcoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first article attempts to map the AE damage surface, or the Holcomb surface, in a synthetic sandstone. The synthetic rock samples are formed under stress, and they are then loaded in various directions in stress space. AE activity is generated in all cases, meaning that the Holcomb surface fully encloses the forming stress state. Note also that the “true” damage surface, indicating the onset of plasticity, also encloses the forming stress, but lies even closer to it. When loaded in the direction of increased shear stresses, plasticity seems to start immediately. The other article combines AE measurements with post-test optical mi- croscopy studies of thin sections. The aim is to identify the sources of theAE activity. AE activity in sandstone is reliably connected to breaking of quartz grains, and this occurs first when the strain is localized in shear bands. Furthermore, damage in sandstone cannot be identified either by AE measurements or microscopy outside the failure zones or before failure has started, even though the material is permanently deformed. In other cases, damage mechanisms are found that do not seem to give rise to AE activity, or AE activity is recorded but a damage mechanism cannot be found.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for petroleumsteknologi og anvendt geofysikknb_NO
dc.relation.ispartofseriesDoktoravhandlinger ved NTNU, 1503-8181; 77nb_NO
dc.subjectSeismiske grunnundersøkelserno_NO
dc.titleAcoustic emission measurements in petroleum-related rock mechanicsnb_NO
dc.typeDoctoral thesisnb_NO
dc.source.pagenumber133 s.nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for petroleumsteknologi og anvendt geofysikknb_NO
dc.description.degreedr.ing.nb_NO
dc.description.degreedr.ing.en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record