Vis enkel innførsel

dc.contributor.authorPollen, Harald Norrud
dc.contributor.authorNylund, Inger-Emma
dc.contributor.authorDahl, Øystein
dc.contributor.authorSvensson, Ann Mari
dc.contributor.authorBrandell, Daniel
dc.contributor.authorYounesi, Reza
dc.contributor.authorTolchard, Julian R
dc.contributor.authorWagner, Nils Peter
dc.date.accessioned2024-06-05T12:17:19Z
dc.date.available2024-06-05T12:17:19Z
dc.date.created2023-12-01T13:11:24Z
dc.date.issued2023
dc.identifier.citationACS Applied Energy Materials. 2023, 6 (23), 12032-12042.en_US
dc.identifier.issn2574-0962
dc.identifier.urihttps://hdl.handle.net/11250/3132704
dc.description.abstractNi-rich layered oxides are proven high-energy cathode materials for Li-ion batteries, but their characteristic short cycle life remains a challenge for implementation on a wider scale. The surface reactivity of Ni-rich layered oxides is the driving force for several capacity fading mechanisms, and a common strategy to combat these issues is to apply a protective surface coating. In this work, LiNi0.88Mn0.06Co0.06O2 (NMC) is surface-modified using octadecyl phosphonic acid (OPA) as a coupling agent through a wet-chemical process. Post-treatments of the coated NMC material at 350 and 450 °C in an O2 atmosphere are also evaluated. Physical characterization confirms the presence of a surface coating and confirms that the surface modification processing has a negligible effect on the bulk material structure. The bare NMC material shows an initial discharge capacity of 199 mAh/g in NMC||LTO cells. The coated NMC material shows a slightly lower initial discharge capacity of 188 mAh/g, but the capacity retention after 210 cycles improves from 86 to 95%. The coated NMC material shows higher discharge capacities than the bare NMC material beyond cycle 75. Postmortem characterizations indicate that the surface reactivity is reduced by the OPA coating as less fluorinated byproducts are formed. The high-temperature post-treatments of the coated NMC material change the surface chemistry but do not improve the electrochemical performance.en_US
dc.language.isoengen_US
dc.publisherACS Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInterphase Engineering of LiNi0.88Mn0.06Co0.06O2 Cathodes Using Octadecyl Phosphonic Acid Coupling Agentsen_US
dc.title.alternativeInterphase Engineering of LiNi0.88Mn0.06Co0.06O2 Cathodes Using Octadecyl Phosphonic Acid Coupling Agentsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber12032-12042en_US
dc.source.volume6en_US
dc.source.journalACS Applied Energy Materialsen_US
dc.source.issue23en_US
dc.identifier.doi10.1021/acsaem.3c02275
dc.identifier.cristin2207407
dc.relation.projectNorges forskningsråd: 197405/F50en_US
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectNorges forskningsråd: 257653en_US
dc.relation.projectNorges forskningsråd: 280910en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal