Vis enkel innførsel

dc.contributor.authorBroberg, Danny
dc.contributor.authorBystrom, Kyle
dc.contributor.authorSrivastava, Shivani
dc.contributor.authorDahliah, Diana
dc.contributor.authorWilliamson, Benjamin Albert Dobson
dc.contributor.authorWeston, Leigh
dc.contributor.authorScanlon, David O.
dc.contributor.authorRignanese, Gian-Marco
dc.contributor.authorDwaraknath, Shyam
dc.contributor.authorVarley, Joel
dc.contributor.authorPersson, Kristin A.
dc.contributor.authorAsta, Mark
dc.contributor.authorHautier, Geoffroy
dc.date.accessioned2023-10-31T07:30:17Z
dc.date.available2023-10-31T07:30:17Z
dc.date.created2023-05-26T10:20:11Z
dc.date.issued2023
dc.identifier.citationnpj Computational Materials. 2023, 9 (1), .en_US
dc.identifier.issn2057-3960
dc.identifier.urihttps://hdl.handle.net/11250/3099561
dc.description.abstractCalculations of point defect energetics with Density Functional Theory (DFT) can provide valuable insight into several optoelectronic, thermodynamic, and kinetic properties. These calculations commonly use methods ranging from semi-local functionals with a-posteriori corrections to more computationally intensive hybrid functional approaches. For applications of DFT-based high-throughput computation for data-driven materials discovery, point defect properties are of interest, yet are currently excluded from available materials databases. This work presents a benchmark analysis of automated, semi-local point defect calculations with a-posteriori corrections, compared to 245 “gold standard” hybrid calculations previously published. We consider three different a-posteriori correction sets implemented in an automated workflow, and evaluate the qualitative and quantitative differences among four different categories of defect information: thermodynamic transition levels, formation energies, Fermi levels, and dopability limits. We highlight qualitative information that can be extracted from high-throughput calculations based on semi-local DFT methods, while also demonstrating the limits of quantitative accuracy.en_US
dc.language.isoengen_US
dc.publisherNatureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHigh-throughput calculations of charged point defect properties with semi-local density functional theory—performance benchmarks for materials screening applicationsen_US
dc.title.alternativeHigh-throughput calculations of charged point defect properties with semi-local density functional theory—performance benchmarks for materials screening applicationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume9en_US
dc.source.journalnpj Computational Materialsen_US
dc.source.issue1en_US
dc.identifier.doi10.1038/s41524-023-01015-6
dc.identifier.cristin2149479
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal