Vis enkel innførsel

dc.contributor.authorZhao, Xiaorui
dc.contributor.authorCao, Yueqiang
dc.contributor.authorDuan, Linlin
dc.contributor.authorYang, Ruoou
dc.contributor.authorJiang, Zheng
dc.contributor.authorTian, Chao
dc.contributor.authorChen, Shangjun
dc.contributor.authorDuan, Xuezhi
dc.contributor.authorChen, De
dc.contributor.authorWan, Ying
dc.date.accessioned2023-02-22T11:33:37Z
dc.date.available2023-02-22T11:33:37Z
dc.date.created2021-12-09T09:30:39Z
dc.date.issued2021
dc.identifier.citationNational Science Review. 2021, 8 (4), .en_US
dc.identifier.issn2095-5138
dc.identifier.urihttps://hdl.handle.net/11250/3053201
dc.description.abstractThe functionalization of otherwise unreactive C–H bonds adds a new dimension to synthetic chemistry, yielding useful molecules for a range of applications. Arylation has emerged as an increasingly viable strategy for functionalization of heteroarenes which constitute an important class of structural moieties for organic materials. However, direct bisarylation of heteroarenes to enable aryl-heteroaryl-aryl bond formation remains a formidable challenge, due to the strong coordination between heteroatom of N or S and transitional metals. Here we report Pd interstitial nanocatalysts supported on ordered mesoporous carbon as catalysts for a direct and highly efficient bisarylation method for five-membered heteroarenes that allows for green and mild reaction conditions. Notably, in the absence of any base, ligands and phase transfer agents, high activity (turn-over frequency, TOF, up to 107 h−1) and selectivity (>99%) for the 2,5-bisarylation of five-membered heteroarenes are achieved in water. A combination of characterization reveals that the remarkable catalytic reactivity here is attributable to the parallel adsorption of heteroarene over Pd clusters, which breaks the barrier to electron transfer in traditional homogenous catalysis and creates dual electrophilic sites for aryl radicals and adsorbate at C2 and C5 positions. The d-band filling at Pd sites shows a linear relationship with activation entropy and catalytic activity. The ordered mesopores facilitate the absence of a mass transfer effect. These findings suggest alternative synthesis pathways for the design, synthesis and understanding of a large number of organic chemicals by ordered mesoporous carbon supported palladium catalysts.en_US
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleUnleash electron transfer in C-H functionalization by mesoporous carbon-supported palladium interstitial catalystsen_US
dc.title.alternativeUnleash electron transfer in C-H functionalization by mesoporous carbon-supported palladium interstitial catalystsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume8en_US
dc.source.journalNational Science Reviewen_US
dc.source.issue4en_US
dc.identifier.doi10.1093/nsr/nwaa126
dc.identifier.cristin1966506
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal