Vis enkel innførsel

dc.contributor.authorKociscak, Samuel
dc.contributor.authorKvammen, Andreas
dc.contributor.authorMann, Ingrid
dc.contributor.authorSørbye, Sigrunn Holbek
dc.contributor.authorTheodorsen, Audun
dc.contributor.authorZaslavsky, Arnaud
dc.date.accessioned2023-02-22T07:06:16Z
dc.date.available2023-02-22T07:06:16Z
dc.date.created2023-02-06T07:15:02Z
dc.date.issued2023
dc.identifier.issn0004-6361
dc.identifier.urihttps://hdl.handle.net/11250/3052937
dc.description.abstractContext. Solar Orbiter provides dust detection capability in the inner heliosphere, but estimating physical properties of detected dust from the collected data is far from straightforward. Aims. First, a physical model for dust collection considering a Poisson process is formulated. Second, it is shown that dust on hyperbolic orbits is responsible for the majority of dust detections with Solar Orbiter’s Radio and Plasma Waves (RPW). Third, the model for dust counts is fitted to Solar Orbiter RPW data and parameters of the dust are inferred, namely radial velocity, hyperbolic meteoroids predominance, and the solar radiation pressure to gravity ratio as well as the uncertainties of these. Methods. Nonparametric model fitting was used to get the difference between the inbound and outbound detection rate and dust radial velocity was thus estimated. A hierarchical Bayesian model was formulated and applied to available Solar Orbiter RPW data. The model uses the methodology of integrated nested Laplace approximation, estimating parameters of dust and their ncertainties. Results. Solar Orbiter RPW dust observations can be modeled as a Poisson process in a Bayesian framework and observations up to this date are consistent with the hyperbolic dust model with an additional background component. Analysis suggests a radial velocity of the hyperbolic component around (63 ± 7) km s−1 with the predominance of hyperbolic dust being about (78 ± 4)%. The results are consistent with hyperbolic meteoroids originating between 0.02 AU and 0.1 AU and showing substantial deceleration, which implies effective solar radiation pressure to a gravity ratio ≳ 0.5. The flux of the hyperbolic component at 1 AU is found to be (1.1 ± 0.2) × 10−4 m−2s−1 and the flux of the background component at 1 AU is found to be (5.4 ± 1.5) × 10−5 m−2s−1.en_US
dc.language.isoengen_US
dc.publisherEDP Sciencesen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleModeling Solar Orbiter dust detection rates in the inner heliosphere as a Poisson processen_US
dc.title.alternativeModeling Solar Orbiter dust detection rates in the inner heliosphere as a Poisson processen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume670en_US
dc.source.journalAstronomy and Astrophysics (A & A)en_US
dc.identifier.doi10.1051/0004-6361/202245165
dc.identifier.cristin2123127
dc.relation.projectNorges forskningsråd: 262941en_US
dc.relation.projectTromsø forskningsstiftelse: 19_SG_ATen_US
dc.source.articlenumberA140en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal