• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrical Resistivity of Transformed Carbon Materials in the Silicon Furnace

Hoover, Haley; Sævarsdottir, Gudrun; Tangstad, Merete
Chapter
Published version
View/Open
978-3-030-92544-4_15.pdf (Locked)
URI
https://hdl.handle.net/11250/3052471
Date
2022
Metadata
Show full item record
Collections
  • Institutt for materialteknologi [2776]
  • Publikasjoner fra CRIStin - NTNU [41955]
Abstract
Optimal current paths through the silicon furnace depend on the electrical properties of the charge materials. It is essential for good tapping conditions that sufficient current is supplied to the arc and lower part of the furnace. As such, the electrical resistivity of the charge mix as it is transformed in the furnace is investigated. Various carbon materials (coal, charcoal, and char) are partially transformed at high temperatures to silicon carbide (SiC) through reactions with silicon monoxide (SiO) gas. The temperature gradient in the crucible creates layers of varying degrees of conversion. These layers are separated and characterized based on SiC, carbon, and Si content. The electrical resistivity of each layer is then measured from 25–1600 °C. When the majority of the material is transformed to SiC, it will raise the resistivity compared to the carbon material, until silicon forms, when it will decrease again. The original structure appears to be more important to the resistivity than the transformation to SiC.
 
Electrical Resistivity of Transformed Carbon Materials in the Silicon Furnace
 
Publisher
Springer

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit