Vis enkel innførsel

dc.contributor.authorJiang, Wulyu
dc.contributor.authorFaid, Alaa Yahia Abulgheit A.
dc.contributor.authorGomes, Bruna Ferreira
dc.contributor.authorGalkina, Irina
dc.contributor.authorXia, Lu
dc.contributor.authorLobo, Carlos Manuel Silva
dc.contributor.authorDesmau, Morgane
dc.contributor.authorBorowski, Patrick
dc.contributor.authorHartmann, Heinrich
dc.contributor.authorMaljusch, Artjom
dc.contributor.authorBesmehn, Astrid
dc.contributor.authorRoth, Christina
dc.contributor.authorSunde, Svein
dc.contributor.authorLehnert, Werner
dc.contributor.authorShviro, Meital
dc.date.accessioned2023-02-17T09:15:51Z
dc.date.available2023-02-17T09:15:51Z
dc.date.created2022-10-04T13:23:02Z
dc.date.issued2022
dc.identifier.citationAdvanced Functional Materials. 2022, 32 (38), .en_US
dc.identifier.issn1616-301X
dc.identifier.urihttps://hdl.handle.net/11250/3051830
dc.description.abstractWater splitting is an environmentally friendly strategy to produce hydrogen but is limited by the oxygen evolution reaction (OER). Therefore, there is an urgent need to develop highly efficient electrocatalysts. Here, NiFe layered double hydroxides (NiFe LDH) with tunable Ni/Fe composition exhibit corresponding dependent morphology, layered structure, and chemical states, leading to higher activity and better stability than that of conventional NiFe LDH-based catalysts. The characterization data show that the low overpotentials (249 mV at 10 mA cm–2), ultrasmall Tafel slopes (24 mV dec–1), and high current densities of Ni3Fe LDH result from the larger fraction of trivalent Fe3+ and the optimized local chemical environment with more oxygen coordination and ordered atomic structure for the metal site. Owing to the active intermediate species, Ni(Fe)OOH, under OER conditions and a reversible dynamic phase transition during the cycling process, the Ni3Fe LDH achieves a high current density of over 2 A cm–2 at 2.0 V, and durability of 400 h at 1 A cm–2 in a single cell test. This work provides insights into the relationship between the composition, electronic structure of the layer, and electrocatalytic performance, and offers a scalable and efficient strategy for developing promising catalysts to support the development of the future hydrogen economy.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComposition-Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highly-Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysisen_US
dc.title.alternativeComposition-Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highly-Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysisen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume32en_US
dc.source.journalAdvanced Functional Materialsen_US
dc.source.issue38en_US
dc.identifier.doi10.1002/adfm.202203520
dc.identifier.cristin2058403
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal