Vis enkel innførsel

dc.contributor.authorWilson, Håvard
dc.contributor.authorVan Rooij, Arnoul
dc.contributor.authorJenewein, Ken
dc.contributor.authorKnöppel, Julius
dc.contributor.authorKormányos, Attila
dc.contributor.authorCherevko, Serhiy
dc.contributor.authorSunde, Svein
dc.contributor.authorErbe, Andreas
dc.date.accessioned2022-11-08T09:48:31Z
dc.date.available2022-11-08T09:48:31Z
dc.date.created2022-04-29T18:42:13Z
dc.date.issued2022
dc.identifier.citationPhysica Status Solidi (a) applications and materials science. 2022, .en_US
dc.identifier.issn1862-6300
dc.identifier.urihttps://hdl.handle.net/11250/3030588
dc.description.abstractIllumination affects corrosion of oxide-covered metals via photoinitiated dissolution processes. Herein, anodized titanium with n-type semiconducting anatase TiO2 and anodized copper with p-type semiconducting cuprite Cu2O of thicknesses up to ≈90 nm are prepared, and investigated under controlled convection in photoelectrochemical experiments illuminated at grazing incidence. Illumination with photon energies above the bandgap triggers anodic photocurrents for titanium above the flat band potential, and cathodic photocurrents for copper below the flat band potential. Increased corrosion rates are evidenced via measurements of polarization curves, electrochemical impedance spectra (EIS) and concentration determination via inductively coupled plasma mass spectrometry (ICP-MS). The increase in corrosion current with illumination is slightly lower than photocurrents, and scales linearly with intensity as expected if triggered by linear absorption. Following the Gerischer model, for titanium, electron-hole pairs cause oxide dissolution by hole annihilation through cation dissolution. For copper, increased corrosion rates are caused by increased cathodic reaction rate through photoexcitation. The maximum nonthermal increase in corrosion rate is ≈1 μA cm−2 for copper, and ≈7 μA cm−2 for titanium, few micrometers per year and negligible for structural materials. Photocorrosion may affect localized corrosion, and nanostructures, for example, if morphology is crucial for a functional surface, as in catalysts.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePhotocorrosion of n- and p-Type Semiconducting Oxide-Covered Metals: Case Studies of Anodized Titanium and Copperen_US
dc.title.alternativePhotocorrosion of n- and p-Type Semiconducting Oxide-Covered Metals: Case Studies of Anodized Titanium and Copperen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber21en_US
dc.source.journalPhysica Status Solidi (a) applications and materials scienceen_US
dc.identifier.doi10.1002/pssa.202100852
dc.identifier.cristin2020233
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal