Vis enkel innførsel

dc.contributor.authorThombre, Mandar
dc.contributor.authorMdoe, Zawadi Ntengua
dc.contributor.authorJäschke, Johannes
dc.date.accessioned2022-05-02T13:28:16Z
dc.date.available2022-05-02T13:28:16Z
dc.date.created2020-10-06T13:55:58Z
dc.date.issued2020
dc.identifier.citationProcesses. 2020, 8 (2), 1-24.en_US
dc.identifier.issn2227-9717
dc.identifier.urihttps://hdl.handle.net/11250/2993683
dc.description.abstractIndustrial waste heat recovery is an attractive option having the simultaneous benefits of reducing energy costs as well as carbon emissions. In this context, thermal energy storage can be used along with an optimal operation strategy like model predictive control (MPC) to realize significant energy savings. However, conventional control methods offer little robustness against uncertainty in terms of daily operation, where supply and demand of energy in the cluster can vary significantly from their predicted profiles. A major concern is that ignoring the uncertainties in the system may lead to the system violating critical constraints that affect the quality of the end-product of the participating processes. To this end, we present a method to make optimal energy storage and discharge decisions, while rigorously handling this uncertainty. We employ multivariate data analysis on historical industrial data to implement a multistage nonlinear MPC scheme based on a scenario-tree formulation, where the economic objective is to minimize energy costs. Principal component analysis (PCA) is used to detect outliers in the industrial data on heat profiles, and to select appropriate scenarios for building the scenario-tree in the multistage MPC formulation. The results show that this data-driven robust MPC approach is successfully able to keep the system from violating any operating constraints. The solutions obtained are not overly conservative, even in the presence of significant deviations between the predicted and actual heat profiles. This leads to an energy-efficient utilization of the storage unit, benefiting all the stakeholders involved in heat-exchange in the cluster.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleData-Driven Robust Optimal Operation of Thermal Energy Storage in Industrial Clustersen_US
dc.title.alternativeData-Driven Robust Optimal Operation of Thermal Energy Storage in Industrial Clustersen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-24en_US
dc.source.volume8en_US
dc.source.journalProcessesen_US
dc.source.issue2en_US
dc.identifier.doi10.3390/pr8020194
dc.identifier.cristin1837621
dc.relation.projectNorges forskningsråd: 257632en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal