Operational time-series data modeling via LSTM network integrating principal component analysis based on human experience
Peer reviewed, Journal article
Accepted version
View/ Open
Date
2020Metadata
Show full item recordCollections
Original version
https://doi.org/10.1016/j.jmsy.2020.11.020Abstract
Today’s information technologies involve increasingly intelligent systems, which come at the cost of increasingly complex equipment. Modern monitoring systems collect multi-measuring-point and long-term data which make equipment health prediction a “big data” problem. It is difficult to extract information from such condition monitoring data to accurately estimate or predict health statuses. Deep learning is a powerful tool for big data processing that is widely utilized in image and speech recognition applications, and can also provide effective predictions in industrial processes. This paper proposes the Long Short-term Memory Integrating Principal Component Analysis based on Human Experience (HEPCA-LSTM), which uses operational time-series data for equipment health prognostics. Principal component analysis based on human experience is first conducted to extract condition parameters from the condition monitoring system. The long short-term memory (LSTM) framework is then constructed to predict the target status. Finally, a dynamic update of the prediction model with incoming data is performed at a certain interval to prevent any model misalignment caused by the drifting of relevant variables. The proposed model is validated on a practical case and found to outperform other prediction methods. It utilizes a powerful deep learning analysis method, the LSTM, to fully process big condition monitoring series data; it effectively extracts the features involved with human experience and takes dynamic updates into consideration.