• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microstructure Evolution and Recrystallization Resistance of a 7055 Alloy Fabricated by Spray Forming Technology and by Conventional Ingot Metallurgy

Xie, Zhiqiang; Jia, Zhihong; Xiang, Kaiyun; Kong, Yaping; Li, Zhenguo; Fan, Xi; Ma, Wantai; Zhang, Hao; Lin, Lin; Marthinsen, Knut; Liu, Qing
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Xie (1.996Mb)
URI
https://hdl.handle.net/11250/2758043
Date
2020
Metadata
Show full item record
Collections
  • Institutt for materialteknologi [2776]
  • Publikasjoner fra CRIStin - NTNU [41954]
Original version
Metallurgical and Materials Transactions A. 2020, 51 (10), 5378-5388.   10.1007/s11661-020-05931-w
Abstract
The effect of different fabricating processes (spray forming and conventional casting) and homogenization treatment on the microstructure of an 7055 alloy was investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron probe X-ray micro-analyzer (EPMA), and transmission electron microscopy (TEM). It was found that the grain size of the as-deposited (spray formed) 7055 alloy had half the size as that of the as-cast 7055 alloy and there was no Al2CuMg phase that embedded in the coarse Mg(Zn, Cu, Al)2 phase distributed along the grain boundaries in the as-deposited 7055 alloy. No segregation of zirconium was observed in the as-deposited 7055 alloy. After homogenization heating at 350 °C/5 hours + 470 °C/24 hours, Al3Zr dispersoids were inhomogeneously distributed within grains in the traditionally cast 7055 alloy, while more homogeneously distributed within grains in the spray-formed 7055 alloy. Compared with the traditional cast 7055 alloy, the uniform distribution of Al3Zr dispersoids in the spray-formed 7055 alloy retards recrystallization more effectively. This investigation highlights the advantage of spray forming technology on improving microstructure of a 7055 alloy.
Publisher
Springer
Journal
Metallurgical and Materials Transactions A

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit