Vis enkel innførsel

dc.contributor.authorPeron, Mirco
dc.contributor.authorBin Afif, Abdulla Shaikh Abdul Qader
dc.contributor.authorDadlani, Anup
dc.contributor.authorBerto, Filippo
dc.contributor.authorTorgersen, Jan
dc.date.accessioned2021-04-22T11:08:18Z
dc.date.available2021-04-22T11:08:18Z
dc.date.created2020-05-20T11:46:06Z
dc.date.issued2020
dc.identifier.citationSurface & Coatings Technology. 2020, 395, .en_US
dc.identifier.issn0257-8972
dc.identifier.urihttps://hdl.handle.net/11250/2739110
dc.description.abstractThe utilization of Mg alloys for biomedical applications is so far underexplored due to the accelerated corrosion hampering patient recovery post implantation. Here, we explore the effectiveness of corrosion reduction of an AZ31 alloy in Simulated Body Fluid when coated with a 40 nm sputtered TiO2 layer and compare it to a similar coating made by Atomic Layer Deposition (ALD). Potentiodynamic polarization and hydrogen evolution experiments were performed on coated samples having different surface roughness and 3D topologies. Interestingly, ALD layers reduce corrosion current density by 94% on Ra = 118.6 ± 5.1 nm and 93% on Ra = 4794.3 ± 49.4 nm, whereas sputtered only by 84% on Ra = 118.6 ± 5.1 nm and 60% on Ra = 4794.3 ± 49.4 nm. Particularly on 3D aspects, the ALD coatings are superior, where a scaffold of 85% porosity with 1 mm pore sizes released 68% lower hydrogen compared to the sputtered counterparts. We relate these observations to the higher surface integrity, adhesion strength and lower line-of-sight restrictions of ALD compared to sputter deposition. The results can be interesting for researchers and practitioners aiming to make Mg alloys more commonplace as temporary metallic implant materials.en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComparing physiologically relevant corrosion performances of Mg AZ31 alloy protected by ALD and sputter coated TiO2en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber14en_US
dc.source.volume395en_US
dc.source.journalSurface & Coatings Technologyen_US
dc.identifier.doi10.1016/j.surfcoat.2020.125922
dc.identifier.cristin1811888
dc.relation.projectNorges forskningsråd: 295864en_US
dc.description.localcodeThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.source.articlenumber125922en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal