Vis enkel innførsel

dc.contributor.authorFarhadian, M.
dc.contributor.authorRaeissi, K.
dc.contributor.authorGolozar, M.A.
dc.contributor.authorLabbaf, S.
dc.contributor.authorHajilou, Tarlan
dc.contributor.authorBarnoush, Afrooz
dc.date.accessioned2021-04-06T09:33:24Z
dc.date.available2021-04-06T09:33:24Z
dc.date.created2020-10-12T13:23:34Z
dc.date.issued2020
dc.identifier.citationApplied Surface Science. 2020, 511 1-12.en_US
dc.identifier.issn0169-4332
dc.identifier.urihttps://hdl.handle.net/11250/2736323
dc.description.abstractThe current study is focused on refining effect of amorphous SiO2 on porosity and interlayer formation of sintered ZrO2-SiO2 composite coatings produced on anodic oxidized 316L substrate. The SiO2 improved particle interaction with the substrate surface and increased thickness of the interlayer formed at the coating/substrate interface. For porosity evaluation, the coatings were sliced and imaged layer by layer using focused ion beam-scanning electron microscopy and 3D visualizations reconstructed by stacking the acquired 2D images. Volume fraction, dimension, distribution and connectivity of pores as a function of coating composition were analyzed. The results showed that SiO2 also densifies the coating and decreases volume fraction of connected pores. Corrosion performance of ZrO2-SiO2 coatings was improved with increasing SiO2 content due to the higher barrier effect resulted by increasing the interlayer thickness as well as the lower permeability supported by lower percent of connected pores.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2020.145567
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.title3D-Focused ion beam tomography and quantitative porosity evaluation of ZrO2-SiO2 composite coating; amorphous SiO2 as a porosity tailoring agenten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber1-12en_US
dc.source.volume511en_US
dc.source.journalApplied Surface Scienceen_US
dc.identifier.doi10.1016/j.apsusc.2020.145567
dc.identifier.cristin1838871
dc.relation.projectNorges forskningsråd: 244068en_US
dc.relation.projectNorges forskningsråd: 245963en_US
dc.description.localcode"© 2020. This is the authors’ accepted and refereed manuscript to the article. Locked until 30.1.2022 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ "en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal