Vis enkel innførsel

dc.contributor.authorHajilou, Tarlan
dc.contributor.authorTaji, Iman
dc.contributor.authorChristien, Frédéric
dc.contributor.authorHe, Shuang
dc.contributor.authorScheiber, Daniel
dc.contributor.authorWerner, Ecker
dc.contributor.authorReinhard, Pippan
dc.contributor.authorRazumovskiy, Vsevolod I
dc.contributor.authorBarnoush, Afrooz
dc.date.accessioned2021-04-06T09:28:47Z
dc.date.available2021-04-06T09:28:47Z
dc.date.created2020-10-15T11:03:40Z
dc.date.issued2020
dc.identifier.citationMaterials Science & Engineering: A. 2020, 794 (139967), .en_US
dc.identifier.issn0921-5093
dc.identifier.urihttps://hdl.handle.net/11250/2736320
dc.description.abstractIntergranular failure of nickel (Ni) single grain boundaries (GBs) owing to the segregation of sulfur (S), hydrogen (H), and their co-segregation has been investigated by employing micro-cantilever bending tests and density functional theory (DFT) calculations. A pure Ni GB shows completely plastic behavior with no fracture observed in the experiments. Electrochemical H-charging of the sample with no S present in the GB leads to a crack formed at the notch tip, which propagates by means of the mixed plastic–brittle fracture mode. Cantilever testing of the H-charged GB with S results in a clear brittle fracture of the GB. The co-segregation of S and H shifts the sudden drop in the load–displacement curves to smaller values of displacement. This is explained by the combined effect of these elements on the work of separation of the selected GB leading to severely decreased GB cohesion.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.titleHydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFTen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber14en_US
dc.source.volume794en_US
dc.source.journalMaterials Science & Engineering: Aen_US
dc.source.issue139967en_US
dc.identifier.doi10.1016/j.msea.2020.139967
dc.identifier.cristin1839772
dc.relation.projectNorges forskningsråd: 245963/F50en_US
dc.description.localcodeThis article will not be available due to copyright restrictions (c) 2020 by Elsevieren_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel