Vis enkel innførsel

dc.contributor.authorSmåbråten, Didrik Rene
dc.contributor.authorHolstad, Theodor Secanell
dc.contributor.authorEvans, Donald
dc.contributor.authorZewu, Yan
dc.contributor.authorBourret, Edith
dc.contributor.authorMeier, Dennis
dc.contributor.authorSelbach, Sverre Magnus
dc.date.accessioned2020-09-08T07:06:57Z
dc.date.available2020-09-08T07:06:57Z
dc.date.created2020-08-12T08:37:33Z
dc.date.issued2020
dc.identifier.citationPhysical Review Research. 2020, 2 (3), .en_US
dc.identifier.issn2643-1564
dc.identifier.urihttps://hdl.handle.net/11250/2676775
dc.description.abstractThe macroscopic performance of ferroelectric and piezoelectric devices depends strongly on domain wall dynamics. It is clear that structural defects, such as vacancies, interstitials, and dopants codetermine the dynamics, but the microscopic understanding of the wall-defect interactions is still at an early stage. Hexagonal manganites are among of the most intensively studied systems with respect to static domain wall properties and thus are ideal model materials for studying domain wall mobility in the presence of defects. Here we study the mobility of domain walls in the hexagonal manganites and how it is affected by cation dopants using density functional theory calculations. The results are correlated with scanning probe microscopy measurements on single crystals, to confirm an increasing domain wall roughness for the dopants we predict to pin the walls. The pinning originates from elastic strain fields around the walls interacting with the local crystal perturbations surrounding a dopant. The pinning strength is correlated with the local change in order parameter amplitude caused by the dopant. As a computationally friendly alternative to large supercell calculations, we demonstrate that domain wall pinning can be predicted from the dopants’ effect on the free-energy landscape of polarization switching. This approach allows to directly probe the effect of defects on domain wall mobility using a fraction of the computational cost, opening the door to detailed modeling and understanding of the critical pinning process of domain walls.en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDomain wall mobility and roughening in doped ferroelectric hexagonal manganitesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber9en_US
dc.source.volume2en_US
dc.source.journalPhysical Review Researchen_US
dc.source.issue3en_US
dc.identifier.doi10.1103/PhysRevResearch.2.033159
dc.identifier.cristin1822885
dc.relation.projectNotur/NorStore: ntnu243en_US
dc.relation.projectNotur/NorStore: NN9264Ken_US
dc.relation.projectNorges forskningsråd: 231430en_US
dc.description.localcodePublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal