Vis enkel innførsel

dc.contributor.authorGil, Maria V
dc.contributor.authorRout, Kumar Ranjan
dc.contributor.authorChen, De
dc.date.accessioned2020-04-22T12:17:08Z
dc.date.available2020-04-22T12:17:08Z
dc.date.created2018-09-14T14:44:14Z
dc.date.issued2018
dc.identifier.citationApplied Energy. 2018, 222 595-607.en_US
dc.identifier.issn0306-2619
dc.identifier.urihttps://hdl.handle.net/11250/2652100
dc.description.abstractHydrogen is highly demanded in biorefinery, and hydrogen production from renewable sources is essential to produce truly green transportation fuels from biomass. The present work demonstrates experimentally the production of high pressure H2 with high purity by pressure swing sorption enhanced steam reforming (PS-SESR) of the byproducts from biorefinery. Pure hydrogen was produced by one-pot high pressure sorption enhanced reforming of a mixture of acetic acid (AA), glycolaldehyde (Gl) and hydroxyacetone (Hy), as model of the byproducts obtained from biomass fast-hydropyrolysis, which is integrated in the H2Bioil process, aimed at producing liquid transportations fuels. SESR was performed using Pd/Ni-Co derived from a hydrotalcite-like material as catalyst and dolomite as CO2 acceptor. Both thermodynamic analysis and experimental study revealed enhanced hydrogen purity but lower hydrogen yield at high pressure compared to atmospheric pressure. Moreover, a compromise between pressure and temperature is needed to get high purity and yield of hydrogen. A H2 purity as high as 99.6 vol% can be obtained at atmospheric pressure and 550 °C, while a H2 purity of 99.0 vol% can be reached at 5 bar and 600 °C. Under these conditions, the H2 yield is of 92.3% at 1 bar and 92.6% at 5 bar. These results show that the SESR of the biomass-derived compounds is an efficient method for the production of highly pure, hot and high pressure hydrogen, which is required for the overall process studied. According to the thermodynamic analysis, and given that the process is performed at high pressure, a pressure swing decarbonation process is suggested for the sorbent regeneration.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.titleProduction of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefineryen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber595-607en_US
dc.source.volume222en_US
dc.source.journalApplied Energyen_US
dc.identifier.doi10.1016/j.apenergy.2018.03.181
dc.identifier.cristin1609608
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article.en_US
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel