Vis enkel innførsel

dc.contributor.authorKaland, Henning
dc.contributor.authorHadler-Jacobsen, Jacob
dc.contributor.authorFagerli, Frode Håskjold
dc.contributor.authorWagner, Nils Peter
dc.contributor.authorWang, Zhaohui
dc.contributor.authorSelbach, Sverre Magnus
dc.contributor.authorVullum-Bruer, Fride
dc.contributor.authorWiik, Kjell
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.date.accessioned2020-04-15T08:36:53Z
dc.date.available2020-04-15T08:36:53Z
dc.date.created2020-03-19T12:49:52Z
dc.date.issued2020
dc.identifier.issn2398-4902
dc.identifier.urihttps://hdl.handle.net/11250/2651094
dc.description.abstractMXenes, a type of two-dimensional transition metal carbide/nitride, have received significant attention for electrochemical storage applications. With substantial capacities predicted for Mg ions, MXenes have been considered a promising candidate for cathode materials for rechargeable Mg batteries (RMBs). While there have been reports demonstrating reversible capacities of 100–200 mA h g−1 for MXene-based cathodes, the understanding of the reactions occurring is limited. Here, we investigate unsolvated Mg2+ intercalation into multi-layered, non-delaminated MXene particles by electrochemical characterization of two common MXenes (Ti3C2Tx and V2CTx) with various electrolytes and at elevated temperatures, complemented by DFT calculations. Our experimental results show poor reversible capacities (<5 mA h g−1) both at room temperature and at 60 °C, indicating that no intercalation of Mg ions occurs during cycling. DFT simulations show that Ti3C2T2 with fluorine and hydroxyl termination groups has a negative average voltage for Mg2+ and reveal high migration barriers for oxygen termination groups, supporting the experimental results. The DFT calculations also reveal that upon magnesiation in multi-layered V2CF2 and V2C(OH)2, MgF2 or MgH2 is formed rather than the electrochemical intercalation of Mg2+. However, multi-layered V2CO2 is found to have both a relatively high theoretical average voltage (∼1.5 V) and a comparatively low migration barrier of 480 meV, allowing for Mg2+ intercalation and RMBs with energy densities comparable to Li-ion batteries. The findings emphasize the need to fully control the MXene termination groups. The possible reasons for the unsatisfactory and deviant electrochemical performance reported in this work and in the literature are critically reviewed to assess the feasibility of MXene cathodes for energy-dense RMBs.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.titleAre MXenes Suitable as Cathode Material for Rechargeable Mg Batteries?en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.journalSustainable Energy & Fuelsen_US
dc.identifier.doi10.1039/D0SE00087F
dc.identifier.cristin1802424
dc.relation.projectNotur/NorStore: NN9264Ken_US
dc.relation.projectNotur/NorStore: NN9414Ken_US
dc.relation.projectNorges forskningsråd: 275810en_US
dc.description.localcode© 2020. This is the authors' accepted and refereed manuscript to the article. Locked until 19.3.2021 due to copyright restrictions. The final authenticated version is available online at: http://dx.doi.org/10.1039/D0SE00087Fen_US
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel