Finite fracture mechanics assessment in moderate and large scale yielding regimes
Journal article, Peer reviewed
Published version
View/ Open
Date
2019Metadata
Show full item recordCollections
Abstract
The coupled Finite Fracture Mechanics (FFM) criteria are applied to investigate the ductile failure initiation at blunt U-notched and V-notched plates under mode I loading conditions. The FFM approaches are based on the simultaneous fulfillment of the energy balance and a stress requirement, and they involve two material properties, namely the fracture toughness and the tensile strength. Whereas the former property is obtained directly from experiments, the latter is estimated through the Equivalent Material Concept (EMC). FFM results are presented in terms of the apparent generalized fracture toughness and compared with experimental data already published in the literature related to two different aluminium alloys, Al 7075-T6 and Al 6061-T6, respectively. It is shown that FFM predictions can be accurate even under moderate or large scale yielding regimes.