Vis enkel innførsel

dc.contributor.authorVasilev, Evgeni
dc.contributor.authorKopylov, Vladimir I
dc.contributor.authorLinderov, Mikhail L.
dc.contributor.authorBrilevsky, AI
dc.contributor.authorMerson, Dmitri
dc.contributor.authorVinogradov, Alexey
dc.date.accessioned2020-01-31T07:59:08Z
dc.date.available2020-01-31T07:59:08Z
dc.date.created2019-08-13T11:40:40Z
dc.date.issued2019
dc.identifier.citationLetters on Materials. 2019, 9 (2), 157-161.nb_NO
dc.identifier.issn2218-5046
dc.identifier.urihttp://hdl.handle.net/11250/2638961
dc.description.abstractMagnesium alloys are the lightest metallic structural materials with an outstanding specific strength. This makes them appealing for a wide range of applications in “green” transportation where weight saving is of major concern. Another emerging application area for modern Mg-based alloys is in the biomedical domain where they are considered as bioabsorbable temporary implants, and where the worldwide market is expanding particularly rapidly in parallel with the surging research. Requirements for mechanical properties - strength, ductility and fatigue resistance - of implants in orthopaedics are stringent. Therefore, a broad variety of processing routes have been proposed in the past decade to tailor the microstructure in order to optimize the properties. In the present brief communication, we demonstrate that using a hybrid deformation processing schedule involving warm equal-channel angular pressing (ECAP) on the first stage and cold rotary swaging on the second dramatically improves the tensile and fatigue properties of the magnesium alloy ZX40. Due to a combined effect of significant grain refinement and dislocation storage after rotary swaging, the ultimate tensile strength and the conventional fatigue limit achieved very high values (for this class of alloys) of 380 MPa and 115 MPa, respectively. Preliminary results of the microstructural investigations are discussed briefly.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute for Metals Superplasticity Problems of Russian Academy of Sciencesnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHigh strength and fatigue properties of Mg-Zn-Ca alloys after severe plastic deformationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber157-161nb_NO
dc.source.volume9nb_NO
dc.source.journalLetters on Materialsnb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.22226/2410-3535-2019-2-157-161
dc.identifier.cristin1715541
dc.description.localcodeLicensed under a Creative Commons Attribution Licence (CC BY)nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal