Dynamic electrochemical impedance study of methanol oxidation at Pt at elevated temperatures
Journal article, Peer reviewed
Accepted version
View/ Open
Date
2019Metadata
Show full item recordCollections
- Institutt for materialteknologi [2573]
- Publikasjoner fra CRIStin - NTNU [38678]
Abstract
The methanol oxidation reaction (MOR) is studied at temperatures up to 140 °C by a combination of cyclic voltammetry, chronoamperometry, and dynamic electrochemical impedance spectroscopy (dEIS). A mechanistic analysis of the reaction is done based on the Tafel relation, the calculated activation energy, and the fitting of dEIS data. At the fuel cell relevant potentials, 0–0.80 V vs RHE, the MOR mechanism is similar at all temperatures. The rate-determining step is the adsorption of water at low overpotentials (< 0.50 V vs RHE), a combination of the methanol adsorption reaction and the surface reaction between adsorbed CO and OH at intermediate potentials (0.50–0.65 V vs RHE), and the methanol adsorption reaction at high potentials (> 0.65 V vs RHE). The shoulder on the oxidation peak at 0.60–0.65 V vs RHE corresponds well with where the CO coverage approaches zero.