Vis enkel innførsel

dc.contributor.advisorHolmestad, Randi
dc.contributor.advisorMarioara, Calin Daniel
dc.contributor.advisorHopperstad, Odd Sture
dc.contributor.authorChristiansen, Emil
dc.date.accessioned2019-11-05T14:52:06Z
dc.date.available2019-11-05T14:52:06Z
dc.date.issued2019
dc.identifier.isbn978-82-326-4101-7
dc.identifier.issn1503-8181
dc.identifier.urihttp://hdl.handle.net/11250/2626668
dc.description.abstractSummary: Nanoscale Characterisation of Deformed Aluminium Alloys Abstract Understanding deformation of structures made from aluminium alloys is important for a range of industries. Aluminium producers must know what affects the properties of the alloys in order to develop and design new and improved alloy compositions, automotive industries must be able to model their products to limit prototype tests, and oil, gas, and construction industry must understand limitations and behaviour of applied materials to predict and prevent failure. If e.g. the automotive industry is unable to use an aluminium alloy instead of other materials such as steel, the result will be a car that potentially pollute more than necessary, or an electrical vehicle with reduced range. Hence, developing models of deformation and fracture of aluminium alloys can also have an environmental impact. However, to develop models that apply to a range of alloys in different geometries and under various loads, it is important to have a physical understanding and foundation of the models. In this regard, it is important to characterise and understand the physical processes that occurs in this kind of materials during deformation down to the nanoscale. One of the most powerful tools for studying materials at the nanoscale is transmission electron microscopy (TEM). This has been the main characterisation instrument used in this thesis, and part of the work has been to develop TEM methods for studying deformed aluminium alloys. One of the goals of this thesis is to investigate the deformation mechanisms in soft precipitate free zones around grain boundaries in aluminium alloys. During deformation, these softer zones are more susceptible to deformation but are also capable of alleviating stress concentrations. Their impact on mechanical properties is therefore controversial. To elucidate the deformation mechanisms of precipitate free zones, we have mapped the orientation gradients around some grain boundaries in a deformed aluminium alloy. These maps show that large orientation changes occur locally inside the precipitate free zones. The fine subgrain structure may be beneficial for ductility as they may strengthen the precipitate free zones. We have also observed that the importance of precipitate free zones depends heavily on the grain shape and size, and on the content of micron-range particles. In alloys where grain boundaries are already weak points, a wider precipitate free zone appears to be beneficial for ductility. In contrast, a wide precipitate free zone is detrimental to ductility when grain boundaries are not weak points for void nucleation and failure. Our investigations of deformation mechanisms in precipitate free zones show a great variety in microstructural features and effects, and adds more understanding to the complex problem of ductile fracture. The importance of precipitate free zones also depend on processes occurring within the grain interiors. We have therefore also studied how deformation affects the fine and needle-like precipitates that are responsible for the alloys strength. We have found, by observing the atomic arrangements in the precipitates after deformation, that these needle-like precipitates are sheared during deformation. This shearing creates defects in the crystal structure that probably prevents further shearing in the same location. We have also simulated how images of sheared precipitates should look like for different shear configurations, and have found that they are sheared several times. In addition, the results indicate that the needles are sheared relatively homogeneously along their length. These observations are important, because we now have a better understanding of the fundamental physics behind deformation of alloys strengthened by these precipitates. The observations enable further modelling and study that might lead to more accurate models and parameters that can be used in a through-scale modelling chain.nb_NO
dc.description.abstractSammendrag For å forstå hvor mye aluminium i en bil, en vindusramme, eller fasaden i et bygg kan tåle av kraftig påkjenning, må vi forstå hvordan materialet er bygget opp på innsiden. Stipendiat Emil Christiansen studerer byggesteiner i materialet på størrelse med en tusendedels hårsbredd. Duktilitet til metaller og legeringer som aluminium er et mål på formbarhet, altså materialets evne til å deformeres uten at det oppstår brudd. Når aluminium bøyes, tøyes og deformeres, flyttes atomene rundt. Siden de fleste metaller er krystaller – en form for materialer der atomene ligger ordnet i en gitterstruktur, forflytter atomene seg ved hjelp av en spesiell type gitterfeil. Disse kaller vi dislokasjoner, som er ørsmå forflytninger av alle atomene rundt en linje i krystallen. For at en merkbar deformasjon skal skje i et metall, må veldig mange slike dislokasjoner forflyttes fra en side av krystallen til en annen. Styrken til et metall bestemmes av hvor enkelt det er å flytte på dislokasjonene. Når et rent metall som aluminium tilsettes små mengder urenheter, som magnesium og silisium, dannes små utfellinger som gjør det vanskeligere å flytte på dislokasjoner. Hver av disse utfellingene i slike legeringer har en lengde som tilsvarer en tusendedels hårsbredd. Dette er så smått at det kan finnes flere billioner av dem i en bit på størrelse med en sukkerbit. I denne doktorgradsavhandlingen har vi brukt høyteknologiske elektronmikroskop for å studere hvordan atomene i aluminiumslegeringene flytter på seg. Slike transmisjonselektronmikroskop gjør at vi kan se hvert enkelt atom og hvordan de ligger ordnet i krystallgitteret. Vi har studert atomene i utfellingene og sett at de blir forflyttet på samme måte som aluminium atomer rundt når legeringene deformeres. Dette er viktig informasjon. Den kan brukes til å lage datamodeller for å forutse styrke og brudd i legeringene. Dette igjen, er viktig for utvikling av nye legeringer og produkter som biler, vindusrammer, og bygninger. Atomene i aluminiumslegeringene ligger altså pent plassert i gitter inne i korn. I mikroskopet ser vi at utfellinger ikke dannes i nærheten av grenser mellom kornene. Det gjør at disse områdene er svakere enn områdene rundt og at atomene i disse områdene flytter litt annerledes på seg. Det fører til at disse myke områdene roterer og vrir seg ganske annerledes enn resten av legeringen. Funnene i avhandlingen er viktig i forbindelse med utvikling og bruk av produkter som helt eller delvis består av aluminium. Avhandlingen er derfor viktig for norske aluminiumsprodusenter og for eksempel i bilindustrien hvor bruken av øker betraktelig.nb_NO
dc.language.isoengnb_NO
dc.publisherNTNUnb_NO
dc.relation.ispartofseriesDoctoral theses at NTNU;2019:252
dc.relation.haspartPaper 1: Christiansen, Emil; Marioara, Calin Daniel; Marthinsen, Knut; Hopperstad, Odd Sture; Holmestad, Randi. Lattice rotations in precipitate free zones in an Al-Mg-Si alloy. Materials Characterization 2018 ;Volum 144. s. 522-531 https://doi.org/10.1016/j.matchar.2018.08.002
dc.relation.haspartPaper 2: Christiansen, Emil; Marioara, Calin Daniel; Holmedal, Bjørn; Hopperstad, Odd Sture; Holmestad, Randi. Nano-scale characterisation of sheared β” precipitates in a deformed Al-Mg-Si alloy. - The final published version is available in Scientific Reports 2019 ;Volum 9. https://doi.org/10.1038/s41598-019-53772-4 - This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/ )
dc.relation.haspartPaper 3: Christiansen, Emil; Ringdalen, Inga Gudem; Bjørge, Ruben; Marioara, Calin Daniel; Holmestad, Randi. Multislice image simulations of sheared needle‐like precipitates in an Al‐Mg‐Si alloy. - The final published version is available in Journal of Microscopy 2020 https://doi.org/10.1111/jmi.12901 - This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/ )
dc.relation.haspartPaper 4: Frodal, Bjørn Håkon; Christiansen, Emil; Myhr, Ole Runar; Hopperstad, Odd Sture. The role of quench rate on the plastic flow and fracture of three aluminium alloys with different grain structure and texture. - The final published version is available in International Journal of Engineering Science 2020 ;Volum 150. https://doi.org/10.1016/j.ijengsci.2020.103257 - This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/ )
dc.titleNanoscale Characterisation of Deformed Aluminium Alloysnb_NO
dc.typeDoctoral thesisnb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel