Vis enkel innførsel

dc.contributor.authorLi, Qian
dc.contributor.authorDeng, Yun-Xiang
dc.contributor.authorZhu, Yi-An
dc.contributor.authorLi, Yang
dc.contributor.authorSui, Zhi Jun
dc.contributor.authorChen, De
dc.contributor.authorYuan, Wei-Kang
dc.date.accessioned2019-04-26T10:43:22Z
dc.date.available2019-04-26T10:43:22Z
dc.date.created2019-01-27T21:48:03Z
dc.date.issued2018
dc.identifier.citationCatalysis Today. 2018, 1-8.nb_NO
dc.identifier.issn0920-5861
dc.identifier.urihttp://hdl.handle.net/11250/2595693
dc.description.abstractPeriodic density functional theory calculations have been performed to examine the effect of oxygen deficiency on the structural stability of Lanthanum-based perovskites (LaMO3), where on-site Coulomb interactions have been addressed by an additional Hubbard-type term. Calculated results indicate that with the exception of LaFeO3, the oxygen vacancy formation energy () of LaMO3 (M = Sc - Cu) becomes less positive when moving across the first transition metal period. The first four LaMO3 perovskites have very high oxygen vacancy formation energies and can hardly be reduced under mild conditions, while the other five perovskites exhibit a much greater reducibility. During the formation of the first oxygen vacancy in LaMO3 (M = Mn - Cu), the nearest neighbor transition-metal cations serve as the primary acceptors of the electrons left behind. As oxygen atoms are further removed, square-based pyramidal and tetrahedral coordination geometries appear successively, and an abrupt increase in is observed at a specific oxygen deficiency (δ), which defines the maximum possible δ in the perovskite structures. Under this definition, the M3+ cations (M = Mn - Ni) can be possibly reduced to M2+ while LaCuO3 may lose at most one lattice oxygen atom per formula unit before it is deactivated.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleStructural stability of Lanthanum-based oxygen-deficient perovskites in redox catalysis: A density functional theory studynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1-8nb_NO
dc.source.journalCatalysis Todaynb_NO
dc.identifier.doi10.1016/j.cattod.2018.04.070
dc.identifier.cristin1665813
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 1.5.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal