The Effect of Potassium on Cobalt-Based Fischer– Tropsch Catalysts with Different Cobalt Particle Sizes
Journal article, Peer reviewed
Published version
Åpne
Permanent lenke
http://hdl.handle.net/11250/2594563Utgivelsesdato
2019Metadata
Vis full innførselSamlinger
Sammendrag
The effect of K on 20%Co/0.5%Re/γ-Al2O3 Fischer–Tropsch catalysts with two different cobalt particle sizes (small, in the range 6–7 nm and medium size, in the range 12–13 nm) was investigated. The catalyst with the smaller cobalt particle size had a lower catalytic activity and C5+ selectivity while selectivities towards CH4 and CO2 were slightly higher than over the catalyst with larger particles. These effects are ascribed to lower hydrogen concentration on the surface as well as the lower reducibility of smaller cobalt particles. Upon potassium addition all samples showed decreased catalytic activity, reported as Site Time Yield (STY), increased C5+ and CO2 selectivities, and a decrease in CH4 selectivity. There was no difference in the effect of potassium between the sample with small cobalt particles compared to the sample with medium size particles). In both cases the specific activity (STY) fell and the C5+ selectivity increased in a similar fashion.