Vis enkel innførsel

dc.contributor.authorQian, Feng
dc.contributor.authorJin, Shenbao
dc.contributor.authorSha, Gang
dc.contributor.authorLi, Yanjun
dc.date.accessioned2019-03-20T15:02:22Z
dc.date.available2019-03-20T15:02:22Z
dc.date.created2018-09-06T23:25:11Z
dc.date.issued2018
dc.identifier.citationActa Materialia. 2018, 157 114-125.nb_NO
dc.identifier.issn1359-6454
dc.identifier.urihttp://hdl.handle.net/11250/2590934
dc.description.abstractThe dispersion hardening effect of Mn(Fe)-containing dispersoids in aluminium alloys has long been ignored since it is difficult to achieve a high number density of fine dispersoids with conventional alloying compositions. This work demonstrates a minor addition of Cd (0.05 at.%) can dramatically enhance the precipitation of α-Al(Mn,Fe)Si dispersoids and therefore the dispersion strengthening of AA3003 alloy. Similar to the 3003 base alloy, a peak hardness in the Cd-containing alloy was obtained after continuous heating to 450 °C. However, an improvement in yield strength by 25% was achieved by the Cd addition. Detailed transmission electron microscopy (TEM) and atom probe tomography (APT) investigations show that the Cd addition has changed the nucleation behaviour of α-Al(Mn,Fe)Si dispersoids from the conventional heterogeneous nucleation on dislocations to a more homogeneous manner. It is found that a high number density of Al-Cd nanoprecipitates formed during heating between 150 and 250 °C. These Al-Cd precipitates attracted Mn and Si atoms to form Mn,Si-rich clusters in/around them, which acted as the precursors for the later nucleation of α-Al(Mn,Fe)Si dispersoids at ∼300 °C. As a result, the number density of dispersoids formed in the Cd-containing alloy after heating to 350–450 °C is about twice as that in the base alloy subjected to the same heat treatment. This work proposes a new approach to enhance the nucleation of α-Al(Mn,Fe)Si dispersoids, which can help to further develop cheap Mn(Fe)-containing dispersoid-strengthened aluminium alloys for high-temperature applications.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleEnhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cdnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber114-125nb_NO
dc.source.volume157nb_NO
dc.source.journalActa Materialianb_NO
dc.identifier.doi10.1016/j.actamat.2018.07.001
dc.identifier.cristin1607471
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 3.7.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal