Vis enkel innførsel

dc.contributor.authorDo, Uyen Phuong
dc.contributor.authorSeland, Frode
dc.contributor.authorJohannessen, Erik Andrew
dc.date.accessioned2019-03-04T08:57:22Z
dc.date.available2019-03-04T08:57:22Z
dc.date.created2018-06-28T14:48:29Z
dc.date.issued2018
dc.identifier.citationJournal of the Electrochemical Society. 2018, 165 (5), H219-H228.nb_NO
dc.identifier.issn0013-4651
dc.identifier.urihttp://hdl.handle.net/11250/2588391
dc.description.abstractThe determination of the real, or active, area of a catalytic surface is a key requirement to understand or quantify parameters related to its electrochemical behavior. There are several experimental methods available, but none of them seems to be universally applied in literature. The choice of method is particularly important when evaluating electrodes made from materials that may interact with the analyte such as gold (Au) and palladium (Pd). A comparable analysis has therefore been made which includes four in situ methods (oxide formation, double layer capacitance, iodine adsorption and electrocatalysis of the Hexacyanoferrate (II/III) reductant-oxidant couple), and two ex situ methods (scanning electron microscopy and atomic force microscopy). It was found that measurements of oxide formation and the double layer capacitance gave the largest real surface area whereas scanning electron microscopy gave the smallest. Considering nanoporous Pd electrodes, the surface area ratio (the ratio between the real and geometric surface area) ranged from 0.8 (scanning electron microscopy) to 75.4 (oxide formation) and 76.5 (double layer capacitance). The corroboration between the results suggests that oxide formation and double layer capacitance provide the most accurate way of determining the real surface area for the electrode system investigated in this paper.nb_NO
dc.language.isoengnb_NO
dc.publisherElectrochemical Societynb_NO
dc.titleThe real area of nanoporous catalytic surfaces of gold and palladium in aqueous solutionsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumberH219-H228nb_NO
dc.source.volume165nb_NO
dc.source.journalJournal of the Electrochemical Societynb_NO
dc.source.issue5nb_NO
dc.identifier.doi10.1149/2.0341805jes
dc.identifier.cristin1594552
dc.relation.projectNorges forskningsråd: 245963nb_NO
dc.description.localcode© 2018. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.1149/2.0341805jesnb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel