• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolution of Crack Tip Constraint in a Mode II Elastic-Plastic Crack Problem

Ayatollahi, MR; Berto, Filippo
Journal article
Submitted version
Thumbnail
View/Open
PhysMesoMech-Qii.doc (419Kb)
URI
http://hdl.handle.net/11250/2587341
Date
2018
Metadata
Show full item record
Collections
  • Institutt for maskinteknikk og produksjon [4335]
  • Publikasjoner fra CRIStin - NTNU [41955]
Original version
Physical Mesomechanics. 2018, 21 (2), 173-177.   10.1134/S102995991802011X
Abstract
Numerous studies have shown that crack tip constraint has an important effect on the level of conservatism when crack extension is investigated in elastic-plastic fracture mechanics. Constraint effect has been explored extensively in the past but mainly for pure mode I problems. Very few researchers have dealt with the effects of crack tip constraint on mode II or mixed mode I/II fracture in metallic materials. In this paper, the evolution of mode II constraint parameter Q in terms of applied external load is determined numerically for a test specimen under pure mode II loading. The finite element method is utilized to model the specimen and to study the range of validity of mode II constraint parameter determined from a Q—T diagram. The parameter Q calculated from the finite element simulation (or from the full field solution) is compared with the values of Q determined from the Q—T diagram. For low levels of load, the results of full field solution are shown to be consistent well with the results obtained from the Q—T diagram. However, when the external load increases significantly, the results of Q—T diagram are no longer accurate and mode II constraint parameter Q should be calculated directly from finite element results.
Publisher
Springer Verlag
Journal
Physical Mesomechanics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit