Hygrothermal Aging of Amine Epoxy: Reversible Static and Fatigue Properties
Journal article, Peer reviewed
Published version
View/ Open
Date
2018Metadata
Show full item recordCollections
Abstract
Fiber-reinforced polymers (FRP) are widely used in structural applications. Long-term properties of such materials exposed to water are of high concern and interest, especially for subsea and offshore applications. The objective of this study is to identify the mechanisms and to identify whether drop in properties of diamine-cured mixed DGEBA-HDDGE is reversible upon drying the material to its initial water content. The properties of interest are mechanical strength, elastic properties and fatigue performance, as well as changes in chemical structure. The effect of absorbed water on the properties of the resin is evaluated, and hygrothermal effects and aging mechanisms are discussed. Furthermore, it is shown experimentally that the tension fatigue S-N curve of a wet epoxy resin can be estimated by shifting the S-N curve of a dry material proportionally to a reduction in static tensile strength due to hygrothermal effects.