Vis enkel innførsel

dc.contributor.authorJemblie, Lise
dc.contributor.authorOlden, Vigdis
dc.contributor.authorMaincon, Philippe Emmanuel
dc.contributor.authorAkselsen, Odd Magne
dc.date.accessioned2019-01-29T12:45:41Z
dc.date.available2019-01-29T12:45:41Z
dc.date.created2017-11-26T15:45:46Z
dc.date.issued2017
dc.identifier.citationInternational journal of hydrogen energy. 2017, 42 (47), 28622-28634.nb_NO
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11250/2582834
dc.description.abstractA coupled finite element hydrogen diffusion and cohesive zone modelling approach has been applied to simulate hydrogen induced fracture initiation in a hot rolled bonded clad steel pipe. The results are compared to experimental fracture mechanical testing in air and under in situ electrochemical hydrogen charging. A best fit to the experimental fracture initiation toughness value in air was achieved for an initial cohesive stiffness kn = 4·106 MPa/mm and a critical cohesive stress σc = 1210 MPa. For simulating under hydrogen influence, the hydrogen induced lowering of the cohesive energy was computed both in terms of the lattice concentration and the total concentration. Two different formulations for calculating the dislocation trap density were considered. The simulated results revealed that both hydrogen in lattice and hydrogen trapped at dislocations can be responsible for the observed hydrogen induced reduction in fracture initiation toughness. The choice of trap density formulation appeared significant only under the assumption that both lattice and trapped hydrogen infer an influence on the hydrogen induced lowering of the cohesive strength. Further effort is needed to provide a reliable description of the interface hydrogen content and distribution.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleCohesive zone modelling of hydrogen induced cracking on the interface of clad steel pipesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber28622-28634nb_NO
dc.source.volume42nb_NO
dc.source.journalInternational journal of hydrogen energynb_NO
dc.source.issue47nb_NO
dc.identifier.doi10.1016/j.ijhydene.2017.09.051
dc.identifier.cristin1518512
dc.relation.projectNorges forskningsråd: 234110nb_NO
dc.description.localcode© 2017. This is the authors’ accepted and refereed manuscript to the article. Locked until 16.10.2019 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal