Vis enkel innførsel

dc.contributor.authorHaider, Shamim
dc.contributor.authorLindbråthen, Arne
dc.contributor.authorLie, Jon Arvid
dc.contributor.authorHagg, May-Britt
dc.date.accessioned2018-09-05T08:34:54Z
dc.date.available2018-09-05T08:34:54Z
dc.date.created2018-05-22T09:03:06Z
dc.date.issued2018
dc.identifier.citationSeparation and Purification Technology. 2018, 204 290-297.nb_NO
dc.identifier.issn1383-5866
dc.identifier.urihttp://hdl.handle.net/11250/2560846
dc.description.abstractChemisorption of oxygen on the active sites of carbon layers limits the use of carbon membranes in air separation application. A novel online electrical regeneration method was applied to prevent the active sites on carbon surface to be reacting with O2 while the membrane was in operation. This method reduced the aging effect and the membrane showed relative stable performance with only 20% loss in O2 permeability and 28% increase in O2/N2 selectivity, over the period of 135 days using various feeds containing H2S, n-Hexane and CO2-CH4 gas. The carbon membranes reported here were produced at the pilot-scale facility by the carbonization of regenerated cellulose under optimized conditions to achieve good air separation properties. The permeation properties of the membranes were tested by single gas separation experiments at 5 bar feed pressure (50 mbar permeate) and temperature range 20–68 °C. It was observed that O2 permeability is increasing exponentially with increase in operating temperature without significant loss in the O2/N2 selectivity. The O2 permeability of 10 Barrer (1 Barrer = 2.736E − 09 m3(STP)m/m2 bar h) with O2/N2 selectivity of 19 was achieved at 68 °C. Thermal (80 °C), chemical (propylene) and online-electrical (10 V DC) regeneration approaches were studied to lessen the aging effect on carbon membranes.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleCarbon membranes for oxygen enriched air – Part I: Synthesis, performance and preventive regenerationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber290-297nb_NO
dc.source.volume204nb_NO
dc.source.journalSeparation and Purification Technologynb_NO
dc.identifier.doihttps://doi.org/10.1016/j.seppur.2018.05.014
dc.identifier.cristin1585801
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 8.5.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal