• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reaction mechanism of CO activation and methane formation on Co Fischer-Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling

Yang, Jia; Qi, Yanying; Zhu, Jun; Zhu, Yi-An; Chen, De; Holmen, Anders
Journal article, Peer reviewed
Published version
Åpne
F-T+JCAT.pdf (Låst)
Permanent lenke
http://hdl.handle.net/11250/2497558
Utgivelsesdato
2013
Metadata
Vis full innførsel
Samlinger
  • Institutt for kjemisk prosessteknologi [1427]
  • Publikasjoner fra CRIStin - NTNU [26671]
Originalversjon
Journal of Catalysis. 2013, 308 37-49.   10.1016/j.jcat.2013.05.018
Sammendrag
A new approach for elucidating reaction mechanism of complex reactions, such as Fischer–Tropsch (F–T) synthesis, is presented. It includes a combination of integrated transient and steady-state kinetic modeling, experimental and DFT investigations of kinetic isotopic effects. The integrated transient and steady-state modeling enable the determination of H2 and CO equilibrium constants and detailed mapping of surface species including surface concentrations and their reactivities. The predictive ability of Langmuir–Hinshelwood type kinetic models has been significantly improved by taking into account the effect of interaction between adsorbed CO on the CO adsorption. Together with DFT investigations of the kinetic isotopic effect, the dominating CO activation pathway through hydrogen-assisted CO dissociation has been confirmed. It led also to a clarification of two carbon pools namely CH2O* (Cα) and CHx* (Cβ) and two corresponding reaction pathways for methane formation. The prevailing reaction pathway for methane formation depends on the operating conditions. Hydrogen surface concentration is the key parameter determining the reactivity of adsorbed CO and the reaction pathways for methane formation.
Utgiver
Elsevier
Tidsskrift
Journal of Catalysis

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit