Vis enkel innførsel

dc.contributor.authorZhao, Kunpeng
dc.contributor.authorBlichfeld, Anders Bank
dc.contributor.authorChen, Hongyi
dc.contributor.authorZhang, Tiansong
dc.contributor.authorZhu, Chenxi
dc.contributor.authorRen, Dudi
dc.contributor.authorHanus, Riley
dc.contributor.authorQiu, Pengfei
dc.contributor.authorIversen, Bo B
dc.contributor.authorXu, Fangfang
dc.contributor.authorSnyder, G. Jeffrey
dc.contributor.authorXun, Shi
dc.contributor.authorChen, Lidong
dc.date.accessioned2018-03-07T09:23:14Z
dc.date.available2018-03-07T09:23:14Z
dc.date.created2017-09-18T09:48:04Z
dc.date.issued2017
dc.identifier.citationChemistry of Materials. 2017, 29 (15), 6367-6377.nb_NO
dc.identifier.issn0897-4756
dc.identifier.urihttp://hdl.handle.net/11250/2489063
dc.description.abstractThermoelectric materials require an optimal carrier concentration to maximize electrical transport and thus thermoelectric performance. Element doping and composition off-stoichiometry are the two general and effective approaches for optimizing carrier concentrations, which have been successfully applied in almost all semiconductors. In this study, we propose a new strategy called bonding energy variation to tune the carrier concentrations in Cu2Se-based liquid-like thermoelectric compounds. By utilizing the different bond features in Cu2Se and Cu2S, alloying S at the Se sites successfully increases the bonding energy to fix Cu atoms in the crystal lattice to suppress the formation of Cu vacancies, leading to greatly reduced carrier concentrations toward the optimal value. Via a combination of the lowered electrical and lattice thermal conductivities and the relatively good carrier mobility caused by the weak alloy scattering potential, ultrahigh zT values are achieved in slightly S-doped Cu2Se with a maximal value of 2.0 at 1000 K, 30% higher than that in nominally stoichiometric Cu2Se.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.titleEnhanced Thermoelectric Performance through Tuning Bonding Energy in Cu2Se1–xSx Liquid-like Materialsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber6367-6377nb_NO
dc.source.volume29nb_NO
dc.source.journalChemistry of Materialsnb_NO
dc.source.issue15nb_NO
dc.identifier.doi10.1021/acs.chemmater.7b01687
dc.identifier.cristin1494627
dc.relation.projectNorges forskningsråd: 250403nb_NO
dc.description.localcode© American Chemical Society 2017. This is the authors accepted and refereed manuscript to the article. Locked until 24.7.2018 due to copyright restrictions.nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel