• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for fysikk
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for fysikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rigid Body Attitude Control

Kleivedalen, Anne Mari
Master thesis
Åpne
718667_FULLTEXT01.pdf (Låst)
718667_COVER01.pdf (Låst)
Permanent lenke
http://hdl.handle.net/11250/247225
Utgivelsesdato
2014
Metadata
Vis full innførsel
Samlinger
  • Institutt for fysikk [1814]
Sammendrag
Geometric numerical integration schemes have been studied for rigid body attitudecontrol problems. We consider symplectic integrators and present a Lie group varia-tional integrator and a discrete gradient method. The two methods preserve some ofthe geometric properties of rigid body dynamics, such as symplecticity, conservationof first integrals and the Lie group structure of the rotation matrices. We presentsome numerical experiments for an uncontrolled 3D pendulum where we investigatethe geometric properties of the two methods.The main part of this thesis concerns rigid body attitude control. We discuss theconcept of passivity and present a feedback control that rotates the rigid body froman initial state to a desired state. Passivity is a property that can be related to en-ergy conservation, and the feedback system presented in this paper is input-outputpassive. This means that the feedback system does not generate energy. Throughseveral numerical experiments, we investigate to which extent the Lie group varia-tional integrator and the discrete gradient method preserve the passivity condition.Our experiments indicate that the discrete gradient method preserves a discrete ver-sion of the passivity condition and for the Lie group variational integrator, the errorin the preservation of passivity is small. We compare our results with a Lie groupRunge-Kutta method and we observe that the method fails to preserve the discretepassivity condition for large step sizes.Lastly, we look at optimal attitude control. We present a time optimal attitudecontrol problem for a rigid body where the objective is to minimize the maneuvertime. The optimal control problem is formulated as a discrete-time optimizationproblem using a Lie group variational integrator. We present some numerical exper-iments to visualize the time optimal maneuver for a rigid body, where the controlinput is bounded.
Utgiver
Institutt for matematiske fag

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit