Vis enkel innførsel

dc.contributor.authorXu, Wenting
dc.contributor.authorHaarberg, Geir Martin
dc.contributor.authorSunde, Svein
dc.contributor.authorSeland, Frode
dc.contributor.authorRatvik, Arne Petter
dc.contributor.authorzimmerman, erik
dc.contributor.authorShimamune, T
dc.contributor.authorGustavsson, J
dc.contributor.authorÅkre, Torjus
dc.date.accessioned2017-11-08T11:22:24Z
dc.date.available2017-11-08T11:22:24Z
dc.date.created2017-10-30T21:51:46Z
dc.date.issued2017
dc.identifier.citationJournal of the Electrochemical Society. 2017, 164 (9), F895-F900.nb_NO
dc.identifier.issn0013-4651
dc.identifier.urihttp://hdl.handle.net/11250/2464892
dc.description.abstractIn this work, commercial IrO2-Ta2O5 anodes with a certain composition calcined at three different temperatures were investigated. The results show that the calcination temperature has a significant influence on the electrocatalytic activity for the oxygen evolution reaction (OER). This is attributed to the influence of the calcination temperature on the surface microstructure including the crystallinity and the preferred orientation of IrO2 crystallites of the IrO2-Ta2O5 binary oxide formed. The surface morphology of the anodes was revealed as mud-cracks surrounded by flat areas containing several scattered IrO2 nanocrystallites. The size of these nanocrystallites, which in turn contribute to the electrochemical active surface area, is dependent on calcination temperature. The (101)-surfaces of the IrO2 were found to have higher catalytic activity than (110) IrO2 with respect to the OER. The (101) IrO2 planes were dominating at low or moderate calcination temperatures, whereas the (110) IrO2 orientation was preferred at the highest calcination temperature. Accelerated lifetime tests of the investigated samples indicate that the (101) IrO2 is more stable (110) IrO2 during electrolysis. A moderate temperature is suggested as the best calcination temperature for this type of anode regarding the electrochemical active surface area, electrocatalytic activity and stability for OER in acidic aqueous electrolytes at operating conditions.nb_NO
dc.language.isoengnb_NO
dc.publisherElectrochemical Societynb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCalcination temperature dependent catalytic activity and stability of IrO2 – Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumberF895-F900nb_NO
dc.source.volume164nb_NO
dc.source.journalJournal of the Electrochemical Societynb_NO
dc.source.issue9nb_NO
dc.identifier.doi10.1149/2.0061710jes
dc.identifier.cristin1509094
dc.relation.projectNorges forskningsråd: 228296nb_NO
dc.description.localcode© The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal