Vis enkel innførsel

dc.contributor.authorSchrade, Matthias
dc.contributor.authorBerland, Kristian
dc.contributor.authorEliassen, Simen Nut Hansen
dc.contributor.authorGuzik, Matylda Natalia
dc.contributor.authorEchevarria-Bonet, Cristina
dc.contributor.authorSørby, Magnus Helgerud
dc.contributor.authorJenus, Petra
dc.contributor.authorHauback, Bjørn
dc.contributor.authorTofan, Raluca
dc.contributor.authorGunnæs, Anette Eleonora
dc.contributor.authorPersson, Clas
dc.contributor.authorLøvvik, Ole Martin
dc.contributor.authorFinstad, Terje
dc.date.accessioned2017-10-31T07:32:52Z
dc.date.available2017-10-31T07:32:52Z
dc.date.created2017-10-27T13:46:07Z
dc.date.issued2017
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11250/2463005
dc.description.abstractThermoelectric application of half-Heusler compounds suffers from their fairly high thermal conductivities. Insight into how effective various scattering mechanisms are in reducing the thermal conductivity of fabricated XNiSn compounds (X = Hf, Zr, Ti, and mixtures thereof) is therefore crucial. Here, we show that such insight can be obtained through a concerted theory-experiment comparison of how the lattice thermal conductivity κLat(T) depends on temperature and crystallite size. Comparing theory and experiment for a range of Hf0.5Zr0.5NiSn and ZrNiSn samples reported in the literature and in the present paper revealed that grain boundary scattering plays the most important role in bringing down κLat, in particular so for unmixed compounds. Our concerted analysis approach was corroborated by a good qualitative agreement between the measured and calculated κLat of polycrystalline samples, where the experimental average crystallite size was used as an input parameter for the calculations. The calculations were based on the Boltzmann transport equation and ab initio density functional theory. Our analysis explains the significant variation of reported κLat of nominally identical XNiSn samples, and is expected to provide valuable insights into the dominant scattering mechanisms even for other materials.nb_NO
dc.language.isoengnb_NO
dc.publisherNature Publishing Groupnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe role of grain boundary scattering in reducing the thermal conductivity of polycrystalline XNiSn (X=Hf, Zr, Ti) half-Heusler alloysnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume7nb_NO
dc.source.journalScientific Reportsnb_NO
dc.identifier.doi10.1038/s41598-017-14013-8
dc.identifier.cristin1508357
dc.relation.projectNorges forskningsråd: 228854nb_NO
dc.description.localcodeOpen Access. This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal