Vis enkel innførsel

dc.contributor.authorBraun, Efrem
dc.contributor.authorZurhelle, Alexander
dc.contributor.authorThijssen, Wouter
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorLin, Li-Chiang
dc.contributor.authorKim, Jihan
dc.contributor.authorThompson, Joshua
dc.contributor.authorSmit, Berend
dc.date.accessioned2017-10-04T11:08:39Z
dc.date.available2017-10-04T11:08:39Z
dc.date.created2016-11-03T11:47:21Z
dc.date.issued2016
dc.identifier.citationMolecular Systems Design & Engineering. 2016, 1 175-188.nb_NO
dc.identifier.issn2058-9689
dc.identifier.urihttp://hdl.handle.net/11250/2458336
dc.description.abstractWith the growth of natural gas as an energy source, upgrading CO2-contaminated supplies has become increasingly important. Here we develop a single metric that captures how well an adsorbent performs the separation of CH4 and CO2, and we then use this metric to computationally screen tens of thousands of all-silica zeolites. We show that the most important predictors of separation performance are the CO2 heat of adsorption (Qst,CO2) and the CO2 saturation loading capacity. We find that a higher-performing material results when the absolute value of the CH4 heat of adsorption (Qst,CH4) is decreased independently of Qst,CO2, but a correlation that exists between Qst,CH4 and Qst,CO2 in all-silica zeolites leads to incongruity between the objectives of optimizing Qst,CO2 and minimizing Qst,CH4, rendering Qst,CH4 nonpredictive of separation performance. We also conduct a large-scale analysis of ideal adsorbed solution theory (IAST) by comparing results obtained using directly-generated mixture isotherms to those obtained using IAST; IAST appears adequate for the purposes of establishing performance trends and structure–property relationships in a high-throughput manner, but it must be tested for validity when analyzing individual adsorbents in detail since it can produce significant errors for materials in which there is site segregation of the adsorbate species.nb_NO
dc.language.isoengnb_NO
dc.publisherRoyal Society of Chemistrynb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHigh-throughput computational screening of nanoporous adsorbents for CO 2 capture from natural gasnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber175-188nb_NO
dc.source.volume1nb_NO
dc.source.journalMolecular Systems Design & Engineeringnb_NO
dc.identifier.doi10.1039/C6ME00043F
dc.identifier.cristin1396964
dc.relation.projectNorges forskningsråd: 230534nb_NO
dc.description.localcode© The Royal Society of Chemistry 2016. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode0


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal