• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for fysikk
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for fysikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Formation of intermediate bands in silicon by transition metal doping - A DFT/DFTB computational study

Solevåg-Hoti, Kenny
Master thesis
Thumbnail
Åpne
14167_FULLTEXT.pdf (4.605Mb)
14167_COVER.pdf (1.556Mb)
Permanent lenke
http://hdl.handle.net/11250/2394156
Utgivelsesdato
2016
Metadata
Vis full innførsel
Samlinger
  • Institutt for fysikk [2911]
Sammendrag
The intermediate band solar cell offers the possibility of increasing the efficiency of modern-day solar cells. By having a narrow intermediate band placed in the conventional band gap, sequential absorption of photons is attainable. With suitable extraction of charge carriers, the photocurrent can increase whilst the voltage is preserved, leading to higher efficiencies. By using electronic structure calculations within density functional theory (DFT) and density-functional tight-binding (DFTB), we study the possible formation of intermediate bands when silicon is doped with a transition metal impurity. We particularly consider the 4d transition metal silver, but also investigate doping by transition metals of the 3d series V, Cr, Mn, Fe and Co. We employ density functional theory in the Kohn-Sham approach, using mainly the Perdew-Wang exchange-correlation functional (PW91) within the generalized gradient approximation. Both DFT and DFTB calculations are performed by using modeling suites in the Amsterdam density functional (ADF) package. It is found, by method of DFTB, that substitutional doping of bulk Si with silver at 0.4% impurity concentration, exhibits an intermediate band at the Fermi level, 0.28 eV above the valence band edge. However, it is also found that our DFTB calculations have poor accuracy, and that this result should be cross-examined by a more accurate method. DFT calculations reveal only contours of formation, yet no intermediate bands are found in silicon with silver impurity concentrations down to 6.25%. Doping with 3d transition metals at 6.25% impurity concentration have not revealed any fully formed intermediate bands.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit