• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D aligned-carbon-nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries

Zhou, Haitao; Lou, Fengliu; Vullum, Per Erik; Einarsrud, Mari-Ann; Chen, De; Vullum-Bruer, Fride
Journal article, Peer reviewed
Thumbnail
View/Open
Final+corrected+manuscript+for+Nanotechnology_11.07.2013.doc (17.78Mb)
URI
http://hdl.handle.net/11250/2392778
Date
2013-09-27
Metadata
Show full item record
Collections
  • Institutt for kjemisk prosessteknologi [1239]
  • Institutt for materialteknologi [1606]
  • Publikasjoner fra CRIStin - NTNU [20888]
Original version
Nanotechnology 2013, 24(43:435703)   10.1088/0957-4484/24/43/435703
Abstract
3D aligned-carbon-nanotubes (ACNTs)@Li2FeSiO4 nanocomposite arrays on Al foil were developed as cathode materials for Li-ion batteries. The ACNTs were grown directly on an Al foil by a chemical vapor deposition method to achieve a 3D current collector structure for direct charge transport. Li2FeSiO4 nanoparticles were deposited on the surface of the ACNTs by a polyvinylalcohol (PVA)-assisted sol–gel method. The 3D samples showed a high degree of alignment of nanotubes with a favorable pore morphology before and after cycling. According to electrochemical measurements, the 3D sample with optimized mass ratio of ACNTs and Li2FeSiO4 (2:1) showed excellent rate capability and capacity retention, delivering a discharge specific capacity of 142 mAh g−1 at a rate of 0.5 C (C = 160 mAg−1) and maintaining 99% of the initial discharge capacity after 50 cycles at 24 ° C. Up to 20 C, the delivered charge/discharge capacity was 94 mAh g−1 after 172 cycles, which is 54% of the value obtained at C/20 (175 mAh g−1). In comparison, carbon coated nanoporous Li2FeSiO4 obtained under analogous conditions by a PVA-assisted sol–gel method can only deliver a capacity of 80 mAh g−1 and showed poor rate capability. In addition, despite amorphization, dissolution and chemical composition changes occurring in the 3D samples upon extended cycling, the 3D samples showed good long-term cycling stability at a high current density (5 C), maintaining ~80% of the initial discharge capacity after 1000 cycles and ~70% after 2000 cycles.
Publisher
IOP Publishing
Journal
Nanotechnology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit