dc.contributor.advisor | Knuutila, Hanna | |
dc.contributor.advisor | Nakao, Andressa | |
dc.contributor.advisor | Svendsen, Hallvard F. | |
dc.contributor.author | Bendiksen, Anders Siwadune | |
dc.date.accessioned | 2022-05-30T12:24:32Z | |
dc.date.available | 2022-05-30T12:24:32Z | |
dc.date.issued | 2022 | |
dc.identifier | no.ntnu:inspera:97565711:18660800 | |
dc.identifier.uri | https://hdl.handle.net/11250/2996856 | |
dc.description.abstract | Dagens metoder for å gjøre en parameterstudie av et karbonfangstanlegg er ofte
en treg prosess som krever mye innsats og manuell input. For å gjøre denne pros-
essen mindre arbeidskrevende ble et neuralt nettverk konstruert i keras/tensorflow
og trent på data produsert av CO2Sim. Modellen hadde en MAPE på 3.8103%, og
både responsvariablene og den økonomiske analysen gav verdier som var innen-
for det man skulle forvente når man sammenlignet med verdier fra eksisterende
forskning. | |
dc.description.abstract | When conducting case studies of carbon capture plants, the current solutions that
exist are both tedious and time consuming. In order to speed up this process, a
neural network model can be trained on data produced by a conventional simu-
lation tool, and then in turn perform the case study. The neural network model
was created using CO2Sim and keras/tensorflow and had a mean average percent-
age error of 3.8103%, and returned both plant specifications and economic data
that are within the bounds of what one would expect when compared to existing
literature. | |
dc.language | eng | |
dc.publisher | NTNU | |
dc.title | Creating a machine learning based
surrogate model for modelling of a
carbon capture plant | |
dc.type | Master thesis | |