• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for kjemisk prosessteknologi
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap (NV)
  • Institutt for kjemisk prosessteknologi
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Simulation of Heat Exchanger with Multicomponent Phase Change

Zotica, Cristina Florina
Master thesis
Thumbnail
Åpne
16687_FULLTEXT.pdf (1.673Mb)
16687_ATTACHMENT.zip (1.057Mb)
16687_COVER.pdf (1.556Mb)
Permanent lenke
http://hdl.handle.net/11250/2459763
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for kjemisk prosessteknologi [1207]
Sammendrag
A dynamic model for a heat exchanger with multicomponent phase change, part of

reliquefaction cycle of natural gas, is developed. The finite control volume method is

used to spatially discretize the heat exchange intro a series of lumps with constant volume.

Vapor-liquid equilibrium is assumed in the vapor-liquid region of the phase envelope.

The model is written in terms of differential and algebraic equations applied to

each lump (or cell).

Different algebraic equations are valid in each of the phase regions (e.g. vapor, liquid,

vapor-liquid), namely the vapor-liquid equilibrium condition is not satisfied in either

of the single phases. Therefore, each phase region has its own set of differential and

algebraic equations. The number required to describe the two-phase region is higher

compared to the single regions. Hence, dummy variables and equations (without a

physical meaning) are used in the single regions to in order to have the same number

of equations in all phases such that the same model can be used for simulating all

phase regions. A logical conditions is implemented to select the corresponding set of

equations.

The model is written and implemented in Matlab® for simulation purposes. The

phase change detection is automatically handled by an event function inside the solver.

A few additional examples are used to investigate how the ode15s solver treats nonsmooth

systems, or how the algebraic equations are solved.

The possibility of formulating the model as a mathematical problem with complementarity

constraints is also investigated.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit