• norsk
    • English
  • English 
    • norsk
    • English
  • Login
Browsing by Author 
  •   Home
  • Browsing by Author
  •   Home
  • Browsing by Author
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browsing NTNU Open by Author "Løvstakken, Lasse"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Æ
  • Ø
  • Å

Sort by:

Order:

Results:

Now showing items 1-20 of 59

  • title
  • issue date
  • submit date
  • author
  • ascending
  • descending
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
    • 3D Myocardial Mechanical Wave Measurements: Toward In Vivo 3D Myocardial Elasticity Mapping 

      Salles, Sebastien; Espeland, Torvald; Rodriguez-Molares, Alfonso; Aase, Svein Arne; Hammer, Tommy; Støylen, Asbjørn; Aakhus, Svend; Løvstakken, Lasse; Torp, Hans (Peer reviewed; Journal article, 2020)
      Objectives This study aimed to investigate the potential of a novel 3-dimensional (3D) mechanical wave velocity mapping technique, based on the natural mechanical waves produced by the heart itself, to approach a noninvasive ...
    • 3D Segmentation of the Left Ventricle in Echocardiography Based on Deep Learning 

      Steinsland, Erik Nikolai (Master thesis, 2020)
      3D ekkokardiografi har blitt et nyttig verktøy for nøyaktig segmentering og volummåling av venstre ventrikkel, da ultralyd anses som trygt og tilgjengelig sammenlignet med andre medisinske avbildningsmetoder. Manuell sporing ...
    • 4D ultrasound vector flow imaging for intraventricular flow assessment 

      Wigen, Morten Smedsrud (Doctoral theses at NTNU;2019:38, Doctoral thesis, 2019)
      4D ultralyd vector flow avbildning for evaluering av blodstrøm i hjertet Ultralyd er den mest utbredte modaliteten for evaluering av hjertefunksjon grunnet tilgjengelighet, lav kostnad og sanntidsvisning. Ekkokardiografi ...
    • A fast 4D B-spline framework for model-based reconstruction and regularization in vector flow imaging 

      Grønli, Thomas; Wigen, Morten Smedsrud; Segers, Patrick; Løvstakken, Lasse (Journal article; Peer reviewed, 2018)
      A generic framework for model-based regularization and reconstruction is described, with applications in a wide range of noisy measurement scenarios. The framework employs automatic differentiation and stochastic gradient ...
    • A framework for the simulation and validation of acoustic fields from medical ultrasound transducers 

      Bakstad, Ole (Master thesis, 2012)
      The unified simulation framework for medical ultrasound, FieldSim, cur- rently supports linear and non-linear simulations by using Field II and Aber- sim, respectively. In this thesis the quasi-linear simulation tool, ...
    • A Scientific Tool for Real-time Acquisition and Analysis of Cardiovascular Measurements: Including ultrasound and other physiological data sources 

      Wigen, Morten Smedsrud (Master thesis, 2013)
      En programvare for studier av karsystemet, for både eksperimentelle og kliniske forsøk, skal utvikles i denne oppgaven. Data fra både ultralyd og andre fysiologiske kilder, som trykk, blodstrøm og volum, skal kunne mottas ...
    • A System for the Acquisition and Analysis of Invasive and Non-invasive Measurements used to quantify Cardiovascular Performance 

      Omejer, Ole Øvergaard (Master thesis, 2011)
      Invasive measurements of cardiac functioning allows for more accurate measures of cardiac functioning than non-invasive measurements. However, invasive measurements is often not available in clinical settings. By comparing ...
    • Adaptive Clutter Filtering for Improved Measurement of Cardiac Blood Velocities 

      Vågsholm, Beate Haram (Master thesis, 2017)
      In ultrasound color flow images of the heart, irregular blood flow patterns might be an early indication of heart disease. The blood flow is possible to image using multi-dimensional blood velocity estimation like speckle ...
    • Adaptive speckle tracking algorithms for improved ultrasound blood flow imaging 

      Drange, Linn Siri (Master thesis, 2013)
      This thesis will present several ways to further improve the robustness of the speckle tracking method. The speckle tracking algorithm was made more adaptive to the velocity changes over time, utilizing velocity estimates ...
    • Age Estimation from B-mode Echocardiography with 3D Convolutional Neural Networks 

      Fiorito, Adrian Meidell (Master thesis, 2019)
      Ekkokardiografi er en ikke-invasiv og sikker metode som bruker ultralyd for avbildning av hjertet. Som på mange andre felt utfører metoder for dyp læring, spesifikt \textit{Convolutional neural networks} (CNNs), oppgaver ...
    • Annotation Web - An open-source web-based annotation tool for ultrasound images 

      Smistad, Erik; Østvik, Andreas; Løvstakken, Lasse (Peer reviewed; Journal article, 2021)
      The use of deep learning and other machine learning techniques requires large amounts of annotated image data. There exist several tools to annotate images, however to our knowledge there are no tools made specifically for ...
    • Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography 

      Salte, Ivar M.; Østvik, Andreas; Smistad, Erik; Melichova, Daniela; Nguyen, Thuy Mi; Karlsen, Sigve; Brunvand, Harald; Haugaa, Kristina H.; Edvardsen, Thor; Løvstakken, Lasse; Grenne, Bjørnar (Journal article; Peer reviewed, 2021)
      Objectives This study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible ...
    • Automatic annotation of structures in echocardiography using deep learning 

      Jansen, Amanda Kathrine (Master thesis, 2021)
      I dag utføres ultralydundersøkelse av hjertet vanligvis av en lege som har tilegnet seg spesialisering i tolkning av ultralydbilder. Som et resultat kan det være utfordrende for ikke-eksperter å bruke ekkokardiografi. Å ...
    • Automatic Detection of Mitral Annular Plane Systolic Excursion from Transesophageal Echocardiography Using Deep Learning 

      Nordal, Trym (Master thesis, 2019)
      Perioperativ monitorering av hjertet til pasienter som gjennomgår operasjoner er nødvendig for å forsikre at hjertets funksjon gjennoprettes. I dag gjennomføres periopertiv monitorering av hjertet manuelt, og baserer seg ...
    • Automatic interpretation of cement evaluation logs from cased boreholes using supervised deep neural networks 

      Viggen, Erlend Magnus; Merciu, Ioan Alexandru; Løvstakken, Lasse; Måsøy, Svein-Erik (Peer reviewed; Journal article, 2020)
      The integrity of cement in cased boreholes is typically evaluated using well logging. However, well logging results are complex and can be ambiguous, and decisions associated with significant risks may be taken based on ...
    • Automatic intraoperative estimation of blood flow direction during neurosurgical interventions 

      Iversen, Daniel Høyer; Løvstakken, Lasse; Unsgård, Geirmund; Reinertsen, Ingerid (Journal article; Peer reviewed, 2018)
      Purpose In neurosurgery, reliable information about blood vessel anatomy and flow direction is important to identify, characterize, and avoid damage to the vasculature. Due to ultrasound Doppler angle dependencies and the ...
    • Automatic Myocardial Strain Imaging in Echocardiography Using Deep Learning 

      Østvik, Andreas; Smistad, Erik; Espeland, Torvald; Berg, Erik Andreas Rye; Løvstakken, Lasse (Journal article; Peer reviewed, 2018)
      Recent studies in the field of deep learning suggest that motion estimation can be treated as a learnable problem. In this paper we propose a pipeline for functional imaging in echocardiography consisting of four central ...
    • Better Automatic Interpretation of Cement Evaluation Logs through Feature Engineering 

      Viggen, Erlend Magnus; Løvstakken, Lasse; Merciu, Ioan Alexandru; Måsøy, Svein-Erik (Chapter, 2021)
      We build systems to automatically interpret cement evaluation logs using supervised machine learning (ML). Such systems can provide instant rough interpretations that may then be used as a basis for human interpretation. ...
    • Better Automatic Interpretation of Cement Evaluation Logs through Feature Engineering 

      Viggen, Erlend Magnus; Løvstakken, Lasse; Måsøy, Svein-Erik; Merciu, Ioan Alexandru (Journal article; Peer reviewed, 2021)
      We investigate systems to automatically interpret cement evaluation logs using supervised machine learning (ML). Such systems can provide instant rough interpretations that may then be used as a basis for human interpretation. ...
    • Blood Speckle-Tracking Based on High–Frame Rate Ultrasound Imaging in Pediatric Cardiology 

      Nyrnes, Siri Ann; Fadnes, Solveig; Wigen, Morten Smedsrud; Mertens, Luc; Løvstakken, Lasse (Peer reviewed; Journal article, 2020)
      Background: Flow properties play an important role in cardiac function, remodeling, and morphogenesis but cannot be displayed in detail with today’s echocardiographic techniques. The authors hypothesized that blood ...

      Contact Us | Send Feedback

      Privacy policy
      DSpace software copyright © 2002-2019  DuraSpace

      Service from  Unit
       

       

      Browse

      ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

      My Account

      Login

      Contact Us | Send Feedback

      Privacy policy
      DSpace software copyright © 2002-2019  DuraSpace

      Service from  Unit