• Development and Validation of a Deep Learning Method to Predict Cerebral Palsy From Spontaneous Movements in Infants at High Risk 

      Groos, Daniel; Adde, Lars; Aubert, Sindre Aarnes; Boswell, Lynn; De Regnier, Raye-Ann; Fjørtoft, Toril Larsson; Gaebler-Spira, Deborah; Haukeland, Andreas; Loennecken, Marianne; Msall, Michael; Moinichen, Unn Inger; Pascal, Aurelie; Peyton, Colleen; Ramampiaro, Heri; Schreiber, Michael D.; Silberg, Inger Elisabeth; Songstad, Nils Thomas; Thomas, Niranjan; van den Broeck, Christine; Øberg, Gunn Kristin; Ihlen, Espen Alexander F.; Støen, Ragnhild (Peer reviewed; Journal article, 2022)
      Importance Early identification of cerebral palsy (CP) is important for early intervention, yet expert-based assessments do not permit widespread use, and conventional machine learning alternatives lack validity. Objective ...
    • Graph Convolutional Networks for Predicting Cerebral Palsy in Infants 

      Haukeland, Andreas; Aubert, Sindre Aarnes (Master thesis, 2021)