Blar i NTNU Open på forfatter "Aramendi, Elisabete"
-
Extracting physiologic and clinical data from defibrillators for research purposes to improve treatment for patients in cardiac arrest
Nordseth, Trond; Eftestøl, Trygve Christian; Aramendi, Elisabete; Kvaløy, Jan Terje; Skogvoll, Eirik (Peer reviewed; Journal article, 2024)Background A defibrillator should be connected to all patients receiving cardiopulmonary resuscitation (CPR) to allow early defibrillation. The defibrillator will collect signal data such as the electrocardiogram (ECG), ... -
Factors Affecting the Course of Resuscitation From Cardiac Arrest With Pulseless Electrical Activity in Children and Adolescents
Skogvoll, Eirik; Nordseth, Trond; Sutton, Robert M.; Eftestøl, Trygve Christian; Irusta, Unai; Aramendi, Elisabete; Niles, Dana E.; Nadkarni, Vinay M.; Berg, Robert A.; Abella, Benjamin S.; Kvaløy, Jan Terje (Peer reviewed; Journal article, 2020)Background: Although in-hospital pediatric cardiac arrests and cardiopulmonary resuscitation occur >15,000/year in the US, few studies have assessed which factors affect the course of resuscitation in these patients. We ... -
Machine learning model to predict evolution of pulseless electrical activity during in-hospital cardiac arrest
Urteaga, Jon; Elola, Andoni; Norvik, Anders; Unneland, Eirik; Eftestøl, Trygve Christian; Bhardwaj, Abhishek; Buckler, David; Abella, Benjamin S.; Skogvoll, Eirik; Aramendi, Elisabete (Peer reviewed; Journal article, 2024)Background During pulseless electrical activity (PEA) the cardiac mechanical and electrical functions are dissociated, a phenomenon occurring in 25–42% of in-hospital cardiac arrest (IHCA) cases. Accurate evaluation of ... -
A probabilistic function to model the relationship between quality of chest compressions and the physiological response for patients in cardiac arrest
Eftestøl, Trygve Christian; Stokka, Svein Erik; Kvaløy, Jan Terje; Rad, Ali Bahrami; Irusta, Unai; Aramendi, Elisabete; Alonso, Erik; Nordseth, Trond; Skogvoll, Eirik; Wik, Lars; Kramer-Johansen, Jo (Peer reviewed; Journal article, 2020)Cardiopulmonary resuscitation quality (CPRQ) parameters can be derived from electric signals obtained during resuscitation. We propose to model a probabilistic relationship between CPRQ parameters and the physiological ...