Bayesian methods accounting for measurement error, misclassification, and missing data using integrated nested Laplace approximations
Doctoral thesis
Permanent lenke
https://hdl.handle.net/11250/3176260Utgivelsesdato
2025Metadata
Vis full innførselSamlinger
Består av
Paper A: Skarstein, Emma Sofie; Martino, Sara; Muff, Stefanie. A joint Bayesian framework for missing data and measurement error using integrated nested Laplace approximations. Biometrical Journal 2023 ;Volum 65.(8) https://doi.org/10.1002/bimj.202300078 - This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Paprt B: Skarstein, Emma Sofie; Muff, Stefanie. inlamemi: An R package for missing data imputation and measurement error modelling using INLA. arXiv.org
Paper C: Skarstein, Emma Sofie; Bastos, Leonardo Soares; Rue, Håvard; Muff, Stefanie. Bayesian models for missing and misclassified variables using integrated nested Laplace approximations. arXiv.org
Paper D: Simmonds, Emily Grace; Adjei, Kwaku Peprah; Cretois, Benjamin; Dickel, Lisa; González-Gil, Ricardo; Laverick, Jack H; Mandeville, Caitlin Marie; Mandeville, Elizabeth G; Ovaskainen, Otso Tapio; Sicacha Parada, Jorge Armando; Skarstein, Emma Sofie; O'Hara, Robert Brian. Recommendations for quantitative uncertainty consideration in ecology and evolution. Trends in Ecology & Evolution 2023 https://doi.org/10.1016/j.tree.2023.10.012 - This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).