• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrating medical plastic waste pyrolysis and circular economy for environmental sustainability

Zoghaib, Reem Nasser Ahmed Ahmed
Journal article, Peer reviewed
Published version
View/Open
Integrating+medical+plastic+waste+pyrolysis+and+circular+economy+for+environmental+sustainability.pdf (Locked)
URI
https://hdl.handle.net/11250/3173655
Date
2025
Metadata
Show full item record
Collections
  • Institutt for maskinteknikk og produksjon [4314]
  • Publikasjoner fra CRIStin - NTNU [41881]
Original version
Renewable and Sustainable Energy Reviews. 2025, 209 115062-?.   https://doi.org/10.1016/j.rser.2024.115062
Abstract
A critical assessment of pyrolysis technologies and reactor designs was discussed, highlighting various reactor configurations. This study explored the influence of catalysts, temperature, heating rate, and residence time on the pyrolysis process, and addressed their effects on product distribution and composition. Safety considerations and strategies for mitigating the potential environmental impacts of pyrolysis were presented. Comparative analyses of the environmental impacts of traditional waste disposal methods versus pyrolysis-based approaches provided insights into the potential reduction of greenhouse gas emissions and other pollutants. The circular economy approach was explored in the context of medical plastic waste pyrolysis. The potential for closing the loop by transforming plastic waste into valuable resources was addressed. The integration of pyrolysis-derived products into existing supply chains was discussed in detail. The role of simulation technology, with an emphasis on Aspen Plus, in optimizing the plastic pyrolysis process was explained. The integration of simulation technology allowed for the prediction and optimization of product yields, energy consumption, and overall process efficiency. The application of AI-enabled predictive maintenance, early detection of process anomalies, and adaptive control strategies contributing to safer and more efficient pyrolysis operations. The integration of pyrolysis-derived products into existing supply chains was studied, illustrating how they can serve as raw materials for manufacturing new products, thereby reducing the demand for virgin resources. Incorporating simulation technology, artificial intelligence, and circular economy principles into the discussion enriched the review by providing insights into the technical and strategic aspects of advancing medical plastic waste pyrolysis as a sustainable waste management solution.
Publisher
Elsevier
Journal
Renewable and Sustainable Energy Reviews

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit