Spatial-Temporal Clustering of Neural Multi- Ensemble Processes using a Hidden Markov Mixture Models
Abstract
Med nylige fremskritt innen Neural Recording teknologi har betydningen av nevrale ensembler økt i modellering av nevron aktivitet. I denne avhandlingen presenterer jeg en ikke-veildedet statistisk læringsmodell designet for å identifisere og analysere flere nevrale ensembler ved å kartlegge nevrodata til et diskret latent variabelrom. I tillegg introduserer jeg en ny tilnærming til modellseleksjon ved å bruke konsensus gruppering for å bestemme antallet ensembler, gruppere nevroner og gjenopprette diskrete latente prosesser innen hver ensemble. Min modell viser robust ytelse og opprettholder høy nøyaktighet selv i tilfeller med et overflødig antall ensembler. With recent advancements in neural recording technologies, accounting for neuronal ensembles has become increasingly important in modeling neural activity. In this thesis, we present an unsupervised statistical learning model designed to identify and analyze multiple neuronal ensembles by mapping neural data to a discrete latent variable space. Additionally, we introduce a novel model selection approach utilizing consensus clustering to accurately determine the number of ensembles, cluster them effectively, and recover discrete latent processes within each ensemble. Our model demonstrates robust performance, maintaining high accuracy even in the presence of an excessive number of ensembles.