Vis enkel innførsel

dc.contributor.authorGryvill, Håkon
dc.contributor.authorGrana, Dario
dc.contributor.authorTjelmeland, Håkon
dc.date.accessioned2024-10-21T12:05:49Z
dc.date.available2024-10-21T12:05:49Z
dc.date.created2024-10-18T15:23:47Z
dc.date.issued2024
dc.identifier.citationMathematical Geosciences. 2024, 1-40.en_US
dc.identifier.issn1874-8961
dc.identifier.urihttps://hdl.handle.net/11250/3159861
dc.description.abstractInverse theory and data assimilation methods are commonly used in earth and environmental science studies to predict unknown variables, such as the physical properties of underground rocks, from a set of measured geophysical data, like geophysical seismic or electromagnetic data. A new Bayesian approach based on the ensemble Kalman filter using Gaussian mixture models is presented to overcome the assumption of Gaussian distribution of the unknown variables commonly used in the data assimilation literature and to generalize the algorithm to inverse problems with multimodal probability distributions. In applications of subsurface characterization, the multimodality of the unknown variables is generally due to the presence of different rock types, also known as geological facies. In the proposed method, the weights of the Gaussian mixture model represent the facies proportions, and they follow a Markov chain model. The proposed Bayesian model generates the unknown model parameters conditioned on measured data using a Markov chain Monte Carlo sampler. The validity of the method is demonstrated on a data assimilation problem where the goal is to estimate the posterior distribution of the unknown rock density from a set of repeated measurements of acoustic wave velocity measured at different times. The proposed method provides accurate estimates with efficient computational times.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleBayesian ensemble Kalman filter for Gaussian mixture modelsen_US
dc.title.alternativeBayesian ensemble Kalman filter for Gaussian mixture modelsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Statistikk: 412en_US
dc.subject.nsiVDP::Statistics: 412en_US
dc.source.pagenumber1-40en_US
dc.source.journalMathematical Geosciencesen_US
dc.identifier.doi10.1007/s11004-024-10160-7
dc.identifier.cristin2313071
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal