Energy Synchronization of Grid-Connected Power Electronic Converters
Master thesis

Date
2024Metadata
Show full item recordCollections
- Institutt for elkraftteknikk [2614]
Abstract
Denne masteroppgaven tar sikte på å revurdere og utfordre den velkjente synkroniseringsmetoden kjent som faselåst sløyfe (PLL), som er utstrakt brukt ved integrering av fornybare energikilder via kraftomformere til strømnettet. En utfordring med denne synkroniseringsmetoden er dens mangel på en global stabilitetsgaranti når kraftomformeren synkroniserer mot et svakt nett. Med den økende andelen av omformerbaserte fornybare energikilder og nedleggelsen av store synkrongeneratorer, synker den totale svingmassen i mange strømnett rundt om i verden, noe som fører til svakere strømnett. Dette medfører ofte at en omfattende og tidkrevende stabilitetsanalyse må gjennomføres når ny kraftelektronikkbasert energiproduksjon bygges ut. Masteroppgaven vil derfor ta for seg å reevaluere hvordan slike synkroniseringsmekanismer blir utformet. Ved å benytte passivitetsargumenter, ønsker oppgaven å erstatte den konvensjonelle faselåste sløyfen med alternative kontrollere som har stabilitetsgarantier selv under alvorlige frekvens og spenningsforstyrrelser i kraftnettet. Kontrollerne utviklet i denne masteroppgaven er basert på prinsipper om energibevaring, for å utnytte de fordelaktige egenskapene – additivitet og bevaring – selv på tvers av ikke-lineære systemer av forskjellige fysiske domener. Selv om det teoretiske globale stabilitetsbeviset for kontrollerne utviklet i masteroppgaven antyder at en ikke-lineær observator er nødvendig – noe som medfører økt kontrollkompleksitet – viser vi gjennom tidssimuleringer at dette kravet potensielt kan senkes. I tillegg presenterer vi et lokalt stabilitetsbevis, som trolig senker det teoretiske observatorkravet, støttet av praktiske tidssimuleringer. This thesis aims to revisit and challenge the well-known synchronization method known as the Phase-Locked-Loop, commonly used when interfacing renewable energy sources via power converters to the grid. Unfortunately, this established synchronization method lacks global stability guarantees, particularly when the converter is synchronizing to a weak grid. With the higher penetration of renewable energy sources, and the decommissioning of large synchronous power generation, the inertia of many grids worldwide is shrinking, making the grids weaker. Caused by this, an extensive and time-consuming (often small-signal) stability analysis has to be performed when new power electronic-based generation is deployed. Thus, this thesis wants to reevaluate the way the power electronic converter synchronization mechanism is designed, working towards replacing the standard PLL with alternative controllers with promising large-signal stability features by relying on passivity arguments. Our alternative controller is based on energy conservation principles, given its advantageous properties of additivity and preservation across non-linear systems. Although our theoretical global stability proof associated with our synchronization alternative suggests that a nonlinear observer is needed--leading to an increased control complexity–we show via practical time-domain simulations that this requirement can potentially be relaxed. In addition, we provide a local theoretical stability proof for our alternative, arguably relaxing the theoretical observer requirement, verified by time-domain simulations.